हिंदी

∫ X 3 ( X − 1 ) ( X − 2 ) ( X − 3 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]
योग

उत्तर

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right)\left( x - 3 \right)}dx\]
\[ = \int\frac{x^3}{\left( x - 1 \right) \left( x^2 - 5x + 6 \right)}dx\]
\[ = \int\frac{x^3}{x^3 - 5 x^2 + 6x - x^2 + 5x - 6}dx\]
\[ = \int\frac{x^3}{x^3 - 6 x^2 + 11x - 6}dx\]
\[ \therefore \frac{x^3}{x^3 - 6 x^2 + 11x - 6} = 1 + \frac{6 x^2 + 11x + 6}{x^2 - 6 x^2 + 11x - 6}\]
\[ \Rightarrow \frac{x^3}{x^3 - 6 x^2 + 11x - 6} = 1 + \frac{6 x^2 - 11x + 6}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)}\]
\[ \therefore \int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx = \int dx + \int\frac{\left( 6 x^2 - 11x + 6 \right)}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)}dx ............(1)\]

\[\text{Let }\frac{6 x^2 - 11x + 6}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} = \frac{A}{x - 1} + \frac{B}{x - 2} + \frac{C}{x - 3}\]
\[ \Rightarrow \frac{6 x^2 - 11x + 6}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} = \frac{A \left( x - 2 \right) \left( x - 3 \right) + B \left( x - 1 \right) \left( x - 3 \right) + C \left( x - 1 \right) \left( x - 2 \right)}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)}\]
\[ \Rightarrow 6 x^2 - 11x + 6 = A \left( x - 2 \right) \left( x - 3 \right) + B \left( x - 1 \right) \left( x - 3 \right) + C \left( x - 1 \right) \left( x - 2 \right) ..............(2)\]
\[\text{Putting }x - 2 = 0\text{ or }x = 2\text{ in eq. (2)}\]
\[ \Rightarrow 6 \times 4 - 22 + 6 = B \left( 2 - 1 \right) \left( 2 - 3 \right)\]
\[ \Rightarrow 8 = B \left( - 1 \right)\]
\[ \Rightarrow B = - 8\]
\[\text{Putting }x - 3 = 0\text{ or }x = 3\text{ in eq. (2)}\]
\[ \Rightarrow 6 \times 3^2 - 11 \times 3 + 6 = C \left( 3 - 1 \right) \left( 3 - 2 \right)\]
\[ \Rightarrow 27 = C \left( 2 \right) \left( 1 \right)\]
\[ \Rightarrow C = \frac{27}{2}\]
\[\text{Putting }x - 1 = 0\text{ or }x = 1\text{ in eq. (2)}\]
\[ \Rightarrow 6 \times 1 - 11 + 6 = A \left( 1 - 2 \right) \left( 1 - 3 \right)\]
\[ \Rightarrow 1 = A \left( - 1 \right) \left( - 2 \right)\]
\[ \Rightarrow A = \frac{1}{2}\]
\[ \therefore \frac{6 x^2 - 11x + 6}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} = \frac{1}{2\left( x - 1 \right)} - \frac{8}{x - 2} + \frac{27}{2\left( x - 3 \right)}..........(3)\]
From eq. (2) and (3)
\[ \therefore \int\frac{x^3 dx}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} = \int dx + \frac{1}{2}\int\frac{1}{x - 1}dx - 8\int\frac{1}{x - 2}dx + \frac{27}{2}\int\frac{1}{x - 3}dx\]
\[ = x + \frac{1}{2} \ln \left| x - 1 \right| - 8 \ln \left| x - 2 \right| + \frac{27}{2} \ln \left| x - 3 \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 10 | पृष्ठ १७६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

\[\int \cot^6 x \text{ dx }\]

\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int \log_{10} x\ dx\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{x}\ dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×