हिंदी

If ∫ 2 1 / X X 2 D X = K 2 1 / X + C , Then K is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to

विकल्प

  • \[- \frac{1}{\log_e 2}\]

  • − loge 2

  • `-1`

  • \[\frac{1}{2}\]

MCQ

उत्तर

[- \frac{1}{\log_e 2}\]

 

\[\text{If }\int\frac{2^\frac{1}{x}}{x^2}dx = k \cdot 2^\frac{1}{x} + C .............(1) \]
\[\text{Let }\frac{1}{x} = t\]
\[ \Rightarrow \frac{- 1}{x^2}dx = dt\]
\[ \Rightarrow \frac{dx}{x^2} = - dt\]
\[\text{Putting }\frac{1}{x} = t\text{ and }\frac{dx}{x^2} = - dt\text{ in LHS of eq. (1), we get}\]
\[ - \int 2^t \cdot dt\]
\[ \Rightarrow - \frac{2^t}{\ln 2} + C\]
\[ \Rightarrow - \frac{2^\frac{1}{x}}{\ln 2} + C . . . (2) \]
\[\text{Comparing RHS of eq (1) with eq (2) we get} , \]
\[ \therefore k = - \frac{1}{\ln 2} or - \frac{1}{\log_e 2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - MCQ [पृष्ठ २००]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
MCQ | Q 10 | पृष्ठ २००

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{1}{1 + \cos 2x} dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int x^3 \sin x^4 dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

`int 1/(cos x - sin x)dx`

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×