Advertisements
Advertisements
प्रश्न
\[\int\frac{1}{1 + \cos 2x} dx\]
योग
उत्तर
\[\int\frac{dx}{1 + \cos \left( 2x \right)} \left[ \therefore 1 + \cos\theta = 2 \cos^2 \left( \frac{\theta}{2} \right) \right]\]
\[ = \int\frac{dx}{2 \cos^2 x}\]
\[ = \frac{1}{2}\int \sec^2 x dx\]
\[ = \frac{1}{2}\tan x + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]
\[\int \sin^2 \frac{x}{2} dx\]
` ∫ tan 2x tan 3x tan 5x dx `
\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]
\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]
\[\int x^3 \cos x^4 dx\]
\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]
` ∫ x {tan^{- 1} x^2}/{1 + x^4} dx`
\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]
\[\int \cot^5 x \text{ dx }\]
` ∫ {1}/{a^2 x^2- b^2}dx`
\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]
\[\int\frac{x^2}{x^6 + a^6} dx\]
\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]
\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]
\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]
\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]
\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]
\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]
\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]
`int 1/(cos x - sin x)dx`
`int"x"^"n"."log" "x" "dx"`
\[\int {cosec}^3 x\ dx\]
\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]
\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]
\[\int\frac{x^2 + 1}{x^2 - 1} dx\]
\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]
\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]
\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]
\[\int \tan^3 x\ \sec^4 x\ dx\]
\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]
\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]
\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]