हिंदी

∫ X 2 + 1 X 2 − 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]
योग

उत्तर

\[\int\left( \frac{x^2 + 1}{x^2 - 1} \right)dx\]
\[ = \int\left( \frac{x^2 - 1 + 2}{x^2 - 1} \right)dx\]
\[ = \int dx + 2\int\frac{1}{x^2 - 1^2}dx\]
\[ = \int dx + 2\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right)}dx . . . \left( 1 \right)\]
\[ \therefore \frac{1}{\left( x - 1 \right)\left( x + 1 \right)} = \frac{A}{x - 1} + \frac{B}{x + 1}\]
\[ \Rightarrow \frac{1}{\left( x - 1 \right) \left( x + 1 \right)} = \frac{A \left( x + 1 \right) + B\left( x - 1 \right)}{\left( x - 1 \right) \left( x + 1 \right)}\]
\[ \Rightarrow 1 = A \left( x + 1 \right) B \left( x - 1 \right) ..........(2)\]
\[\text{Putting }x + 1 = 0\text{ or }x = - 1\text{ in eq. (2)}\]
\[ \Rightarrow 1 = A \times 0 + B \left( - 1 - 1 \right)\]
\[ \Rightarrow B = \frac{- 1}{2}\]
\[\text{Putting }x - 1 = 0\text{ or }x = 1\text{ in eq (2)}\]
\[ \Rightarrow 1 = A \left( 1 + 1 \right) + B \times 0\]
\[ \Rightarrow A = \frac{1}{2}\]
\[ \therefore \frac{1}{\left( x - 1 \right)\left( x + 1 \right)} = \frac{1}{2\left( x - 1 \right)} - \frac{1}{2\left( x + 1 \right)} ..........(3)\]
From eq. (1) and (3)
\[\int\left( \frac{x^2 + 1}{x^2 - 1} \right)dx = \int dx + 2\int\left[ \frac{1}{2 \left( x - 1 \right)} - \frac{1}{2 \left( x + 1 \right)} \right]dx\]
\[ = \int dx + \int\frac{dx}{x - 1} - \int\frac{dx}{x + 1}\]
\[ = x + \ln \left| x - 1 \right| = - \ln \left| x + 1 \right| + C\]
\[ = x + \ln \left| \frac{x - 1}{x + 1} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 5 | पृष्ठ १७६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int \tan^4 x\ dx\]

\[\int {cosec}^4 2x\ dx\]


\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×