English

∫ X 2 + 1 X 2 − 1 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]
Sum

Solution

\[\int\left( \frac{x^2 + 1}{x^2 - 1} \right)dx\]
\[ = \int\left( \frac{x^2 - 1 + 2}{x^2 - 1} \right)dx\]
\[ = \int dx + 2\int\frac{1}{x^2 - 1^2}dx\]
\[ = \int dx + 2\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right)}dx . . . \left( 1 \right)\]
\[ \therefore \frac{1}{\left( x - 1 \right)\left( x + 1 \right)} = \frac{A}{x - 1} + \frac{B}{x + 1}\]
\[ \Rightarrow \frac{1}{\left( x - 1 \right) \left( x + 1 \right)} = \frac{A \left( x + 1 \right) + B\left( x - 1 \right)}{\left( x - 1 \right) \left( x + 1 \right)}\]
\[ \Rightarrow 1 = A \left( x + 1 \right) B \left( x - 1 \right) ..........(2)\]
\[\text{Putting }x + 1 = 0\text{ or }x = - 1\text{ in eq. (2)}\]
\[ \Rightarrow 1 = A \times 0 + B \left( - 1 - 1 \right)\]
\[ \Rightarrow B = \frac{- 1}{2}\]
\[\text{Putting }x - 1 = 0\text{ or }x = 1\text{ in eq (2)}\]
\[ \Rightarrow 1 = A \left( 1 + 1 \right) + B \times 0\]
\[ \Rightarrow A = \frac{1}{2}\]
\[ \therefore \frac{1}{\left( x - 1 \right)\left( x + 1 \right)} = \frac{1}{2\left( x - 1 \right)} - \frac{1}{2\left( x + 1 \right)} ..........(3)\]
From eq. (1) and (3)
\[\int\left( \frac{x^2 + 1}{x^2 - 1} \right)dx = \int dx + 2\int\left[ \frac{1}{2 \left( x - 1 \right)} - \frac{1}{2 \left( x + 1 \right)} \right]dx\]
\[ = \int dx + \int\frac{dx}{x - 1} - \int\frac{dx}{x + 1}\]
\[ = x + \ln \left| x - 1 \right| = - \ln \left| x + 1 \right| + C\]
\[ = x + \ln \left| \frac{x - 1}{x + 1} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 176]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 5 | Page 176

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\cos\sqrt{x}\ dx\]

 
` ∫  x tan ^2 x dx 

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×