English

∫ X 2 + X + 5 3 X + 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x^2 + x + 5}{3x + 2} dx\]
Sum

Solution

\[\int\frac{\left( x^2 + x + 5 \right)}{\left( 3x + 2 \right)}dx\]
\[ = \frac{1}{9}\int\frac{9 x^2 + 9x + 45}{\left( 3x + 2 \right)}dx\]
\[ = \frac{1}{9}\left[ \int\frac{9 x^2 - 4}{3x + 2}dx + \int\frac{9x + 6}{3x + 2}dx + \int\frac{43}{3x + 2}dx \right]\]
\[ = \frac{1}{9}\left[ \int\frac{\left( 3x - 2 \right)\left( 3x + 2 \right)}{\left( 3x + 2 \right)}dx + \int\frac{3\left( 3x + 2 \right)}{3x + 2}dx + 43\int\frac{dx}{3x + 2} \right]\]
\[ = \frac{1}{9}\left[ \int\left( 3x - 2 \right) dx + 3\int1dx + 43\int\frac{dx}{3x + 2} \right]\]
\[ = \frac{1}{9}\left[ \left( 3\frac{x^2}{2} - 2x \right) + 3x + \frac{43}{3} \text{ln}\left| 3x + 2 \right| + C \right]\]
\[ = \frac{1}{9}\left[ \frac{3}{2} x^2 + x - \frac{43}{3} \text{ln }\left| 3x + 2 \right| + C \right]\]
\[ = \frac{1}{6} x^2 + \frac{1}{9}x - \frac{43}{27} \text{ln }\left| 3x + 2 \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.04 [Page 30]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.04 | Q 3 | Page 30

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int \sin^5 x \text{ dx }\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int x^3 \cos x^2 dx\]

\[\int \log_{10} x\ dx\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int \sin^4 2x\ dx\]

\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int \tan^5 x\ dx\]

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int \cos^5 x\ dx\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×