Advertisements
Advertisements
Question
\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]
Sum
Solution
\[\text{ Let I }= \int\left( \frac{\sin x + \cos x}{\sqrt{\sin 2 x}} \right)dx\]
\[\text{ Putting sin x - cos x = t }\]
\[ \Rightarrow \left( \cos x + \sin x \right)dx = dt\]
\[\text{ Also} \left( \text{ sin x} - \cos x \right)^2 = t^2 \]
\[ \Rightarrow \sin^2 x + \cos^2 x - 2 \sin x \cos x = t^2 \]
\[ \Rightarrow 1 - t^2 = \text{ sin }\left( 2x \right)\]
\[ \therefore I = \int\frac{dt}{\sqrt{1 - t^2}}\]
\[ = \sin^{- 1} t + C \left( \int\frac{dt}{\sqrt{a^2 - x^2}} = \sin^{- 1} \frac{x}{a} + C \right)\]
` = \text{ sin}^{- 1} \text{ ( sin x - cos x }) + C ( ∵ t = sin x - cos x ) `
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]
\[\int\frac{\sin^2 x}{1 + \cos x} \text{dx} \]
\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2} \text{dx} \]
\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]
\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]
\[\int\frac{\cos x}{2 + 3 \sin x} dx\]
` ∫ sec^6 x tan x dx `
` ∫ tan^5 x dx `
\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]
\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]
\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]
\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]
\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]
\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]
\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]
\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]
\[\int x e^{2x} \text{ dx }\]
` ∫ sin x log (\text{ cos x ) } dx `
` ∫ x tan ^2 x dx
\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]
\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]
\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]
\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]
∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]
\[\int\sqrt{3 - x^2} \text{ dx}\]
\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]
\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]
\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]
\[\int\frac{1}{1 + \tan x} dx =\]
\[\int \sin^4 2x\ dx\]
\[\int\frac{1}{e^x + 1} \text{ dx }\]
\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]
\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]
\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]
\[\int \tan^{- 1} \sqrt{x}\ dx\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]