Advertisements
Advertisements
Question
` ∫ sec^6 x tan x dx `
Sum
Solution
` ∫ sec^6 x tan x dx `
=∫ sec6 x.sec x tan x dx
Let sec x = t
Let sec x = t
⇒ sec x tan x dx = dt
Now, ∫ sec6 x.sec x tan x dx
= ∫ t6. dt
Now, ∫ sec6 x.sec x tan x dx
= ∫ t6. dt
\[= \frac{t^6}{6} + C\]
\[ = \frac{\sec^6 x}{6} + C\]
\[ = \frac{\sec^6 x}{6} + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]
\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]
\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]
\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]
\[\int \sin^5\text{ x }\text{cos x dx}\]
\[\int \cot^6 x \text{ dx }\]
\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]
` = ∫1/{sin^3 x cos^ 2x} dx`
\[\int\frac{1}{\sin x \cos^3 x} dx\]
\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]
\[\int\frac{1}{\sqrt{2x - x^2}} dx\]
\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]
\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]
\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{ dx }\]
\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]
\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]
\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{ dx }\]
\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]
\[\int x e^x \text{ dx }\]
\[\int\frac{\log \left( \log x \right)}{x} dx\]
\[\int2 x^3 e^{x^2} dx\]
\[\int x^3 \cos x^2 dx\]
\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]
\[\int\sqrt{2ax - x^2} \text{ dx}\]
\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{ dx }\]
\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{ dx }\]
\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]
\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]
\[\int\frac{x^3 - 1}{x^3 + x} dx\]
\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]
\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]
If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then
\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]
\[\int \cot^5 x\ dx\]
\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]
\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]
\[\int\frac{\log x}{x^3} \text{ dx }\]
\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]