Advertisements
Advertisements
Question
\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]
Sum
Solution
\[\int \frac{dx}{1 - \sin\left( \frac{x}{2} \right)}\]
\[ = \int\frac{\left( 1 + \sin \frac{x}{2} \right)}{\left( 1 - \sin \frac{x}{2} \right) \left( 1 + \sin \frac{x}{2} \right)} dx\]
\[ = \int\left( \frac{1 + \sin \frac{x}{2}}{1 - \sin^2 \frac{x}{2}} \right)dx\]
\[ = \int\left( \frac{1 + \sin\frac{x}{2}}{\cos^2 \frac{x}{2}} \right) dx\]
\[ = \int\left( \sec^2 \frac{x}{2} + \sec \frac{x}{2} \text{tan }\frac{x}{2} \right)dx\]
\[ = \frac{\tan \left( \frac{x}{2} \right)}{\frac{1}{2}} + \frac{\sec \left( \frac{x}{2} \right)}{\frac{1}{2}} + C\]
\[ = 2 \left( \tan \frac{x}{2} + \sec \frac{x}{2} \right) + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int \cos^{- 1} \left( \sin x \right) dx\]
\[\int\frac{1 + \cos x}{1 - \cos x} dx\]
\[\int\frac{x^2 + x + 5}{3x + 2} dx\]
\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]
\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]
\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]
\[\int\frac{e^x + 1}{e^x + x} dx\]
\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]
\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]
` ∫ tan^5 x dx `
\[\int\frac{x}{x^4 - x^2 + 1} dx\]
\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]
\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]
\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]
\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]
\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{ dx }\]
\[\int\frac{1}{p + q \tan x} \text{ dx }\]
\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]
\[\int x^2 \tan^{- 1} x\text{ dx }\]
\[\int x \cos^3 x\ dx\]
\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int e^x \sec x \left( 1 + \tan x \right) dx\]
\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]
\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]
\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]
\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]
\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]
\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]
\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]
\[\int\left( x - 1 \right) e^{- x} dx\] is equal to
\[\int\frac{1}{1 + \tan x} dx =\]
\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]
\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
\[\int\frac{1}{e^x + e^{- x}} dx\]
\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]
\[\int x^3 \left( \log x \right)^2\text{ dx }\]
\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]