English

∫ 1 √ 1 + Cos X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]
Sum

Solution

\[\int\frac{1}{\sqrt{1 + \ cosx}}dx\]

\[ = \int\frac{1}{\sqrt{2 \cos^2 \frac{x}{2}}}dx\]

\[ = \frac{1}{\sqrt{2}}\int\sec\frac{x}{2}\text{ dx}\]

\[ = \frac{1}{\sqrt{2}} \times \text{2 }\text{ln }\left| \tan\frac{x}{2} + \sec\frac{x}{2} \right| + C\]

`= \sqrt2  In  |  {1 + sin ^ {x/2 }}/{cos ^{x/2}} | + C `

`= \sqrt2  In  | (( \text{sin} x/4 + \text{cos} x/4)^2  )/((cos^2  x /4  - \text{sin}^2 x /4 ))  | + C ` ` [ ∵  1 + sin θ  = ( sin^2  θ/2  + cos^2   θ/2+ 2 sin  θ/2 cos  θ/2 ) = ( sin  θ/2 + cos  θ/2)^2 and cos   θ = cos ^2  θ/2   - sin^2  θ/2 ]` 

`= \sqrt2  In  | (( \text{sin} x/4 + \text{cos} x/4)^2  )/((\text{cos }x /4  - \text{sin} x /4 )  (\text{cos} x/4  + \text{sin}x/4 ))| + C `

 

 

`= \sqrt2  In  | { sin  x/4 + cos  x/4} / {cos  x/4  - sin  x/4} |` + C 

`= \sqrt2  In  |  {1 + tan  x/4 } /{1- tan  x/4}| + C `

`= \sqrt2  In  |   tan  (x/4 + x/4) |+ C `

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.08 [Page 47]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.08 | Q 2 | Page 47

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int \sin^2 \frac{x}{2} dx\]

Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int\frac{a}{b + c e^x} dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int \cot^6 x \text{ dx }\]

\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int x \sin^3 x\ dx\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int \sin^5 x\ dx\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int {cosec}^4 2x\ dx\]


\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×