English

∫ 18 ( X + 2 ) ( X 2 + 4 ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]
Sum

Solution

We have,

\[I = \int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)}dx\]

\[\text{Let }\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} = \frac{A}{x + 2} + \frac{Bx + C}{x^2 + 4}\]

\[ \Rightarrow \frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} = \frac{A \left( x^2 + 4 \right) + \left( Bx + C \right) \left( x + 2 \right)}{\left( x + 2 \right) \left( x^2 + 4 \right)}\]

\[ \Rightarrow 18 = A x^2 + 4A + B x^2 + 2Bx + Cx + 2C\]

\[ \Rightarrow 18 = \left( A + B \right) x^2 + x \left( 2B + C \right) + 4A + 2C\]

\[\text{Equating coefficients of like terms}\]

\[A + B = 0 . . . . . \left( 1 \right)\]

\[2B + C = 0 . . . . . \left( 2 \right)\]

\[4A + 2C = 18 . . . . . \left( 3 \right)\]

\[\text{Solving (1), (2) and (3), we get}\]

\[A = \frac{9}{4}\]

\[B = - \frac{9}{4}\]

\[C = \frac{9}{2}\]

\[ \therefore \frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} = \frac{9}{4 \left( x + 2 \right)} + \frac{- \frac{9}{4}x + \frac{9}{2}}{x^2 + 4}\]

\[ \Rightarrow \frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} = \frac{9}{4 \left( x + 2 \right)} - \frac{9}{4} \left( \frac{x}{x^2 + 4} \right) + \frac{9}{2 \left( x^2 + 4 \right)}\]

\[ \Rightarrow \int\frac{18 dx}{\left( x + 2 \right) \left( x^2 + 4 \right)} = \frac{9}{4}\int\frac{dx}{x + 2} - \frac{9}{4}\int\frac{x dx}{x^2 + 4} + \frac{9}{2}\int\frac{dx}{x^2 + 2^2}\]

\[\text{Let }x^2 + 4 = t\]

\[ \Rightarrow 2xdx = dt\]

\[ \Rightarrow x dx = \frac{dt}{2}\]

\[ \therefore I = \frac{9}{4}\int\frac{dx}{x + 2} - \frac{9}{8}\int\frac{dt}{t} + \frac{9}{2}\int\frac{dx}{x^2 + 2^2}\]

\[ = \frac{9}{4} \log \left| x + 2 \right| - \frac{9}{8} \log \left| t \right| + \frac{9}{2} \times \frac{1}{2} \tan^{- 1} \left( \frac{x}{2} \right) + C'\]

\[ = \frac{9}{4} \log \left| x + 2 \right| - \frac{9}{8} \log \left| x^2 + 4 \right| + \frac{9}{4} \tan^{- 1} \left( \frac{x}{2} \right) + C'\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 177]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 35 | Page 177

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int x \sin x \cos x\ dx\]

 


\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×