Advertisements
Advertisements
Question
Solution
We have,
\[I = \int\frac{5 dx}{\left( x^2 + 1 \right) \left( x + 2 \right)}\]
\[\text{Let }\frac{5}{\left( x + 2 \right) \left( x^2 + 1 \right)} = \frac{A}{x + 2} + \frac{Bx + C}{x^2 + 1}\]
\[ \Rightarrow \frac{5}{\left( x + 2 \right) \left( x^2 + 1 \right)} = \frac{A \left( x^2 + 1 \right) + \left( Bx + C \right) \left( x + 2 \right)}{\left( x + 2 \right) \left( x^2 + 1 \right)}\]
\[ \Rightarrow 5 = A \left( x^2 + 1 \right) + B x^2 + 2Bx + Cx + 2C\]
\[ \Rightarrow 5 = \left( A + B \right) x^2 + \left( 2B + C \right) x + \left( A + 2C \right)\]
\[\text{Equating coefficients of like terms}\]
\[A + B = 0 . . . . . \left( 1 \right)\]
\[2B + C = 0 . . . . . \left( 2 \right)\]
\[A + 2C = 5 . . . . . \left( 3 \right)\]
\[\text{Solving (1), (2) and (3), we get}\]
\[A = 1\]
\[B = - 1\]
\[C = 2\]
\[ \therefore \frac{5}{\left( x + 2 \right) \left( x^2 + 1 \right)} = \frac{1}{x + 2} + \left( \frac{- x + 2}{x^2 + 1} \right)\]
\[ \Rightarrow \int\frac{5 dx}{\left( x + 2 \right) \left( x^2 + 1 \right)} = \int\frac{dx}{x + 2} - \int\frac{x dx}{x^2 + 1} + 2\int\frac{dx}{x^2 + 1}\]
\[\text{Let }x^2 + 1 = t\]
\[ \Rightarrow 2xdx = dt\]
\[ \Rightarrow x dx = \frac{dt}{2}\]
\[ \therefore I = \int\frac{dx}{x + 2} - \frac{1}{2}\int\frac{dt}{t} + 2\int\frac{dx}{x^2 + 1^2}\]
\[ = \log \left| x + 2 \right| - \frac{1}{2} \log \left| t \right| + 2 \tan^{- 1} x + C'\]
\[ = \log \left| x + 2 \right| - \frac{1}{2} \log \left| x^2 + 1 \right| + 2 \tan^{- 1} x + C'\]
APPEARS IN
RELATED QUESTIONS
\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]
\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]
\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`