English

∫ 5 ( X 2 + 1 ) ( X + 2 ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]
Sum

Solution

We have,

\[I = \int\frac{5 dx}{\left( x^2 + 1 \right) \left( x + 2 \right)}\]

\[\text{Let }\frac{5}{\left( x + 2 \right) \left( x^2 + 1 \right)} = \frac{A}{x + 2} + \frac{Bx + C}{x^2 + 1}\]

\[ \Rightarrow \frac{5}{\left( x + 2 \right) \left( x^2 + 1 \right)} = \frac{A \left( x^2 + 1 \right) + \left( Bx + C \right) \left( x + 2 \right)}{\left( x + 2 \right) \left( x^2 + 1 \right)}\]

\[ \Rightarrow 5 = A \left( x^2 + 1 \right) + B x^2 + 2Bx + Cx + 2C\]

\[ \Rightarrow 5 = \left( A + B \right) x^2 + \left( 2B + C \right) x + \left( A + 2C \right)\]

\[\text{Equating coefficients of like terms}\]

\[A + B = 0 . . . . . \left( 1 \right)\]

\[2B + C = 0 . . . . . \left( 2 \right)\]

\[A + 2C = 5 . . . . . \left( 3 \right)\]

\[\text{Solving (1), (2) and (3), we get}\]

\[A = 1\]

\[B = - 1\]

\[C = 2\]

\[ \therefore \frac{5}{\left( x + 2 \right) \left( x^2 + 1 \right)} = \frac{1}{x + 2} + \left( \frac{- x + 2}{x^2 + 1} \right)\]

\[ \Rightarrow \int\frac{5 dx}{\left( x + 2 \right) \left( x^2 + 1 \right)} = \int\frac{dx}{x + 2} - \int\frac{x dx}{x^2 + 1} + 2\int\frac{dx}{x^2 + 1}\]

\[\text{Let }x^2 + 1 = t\]

\[ \Rightarrow 2xdx = dt\]

\[ \Rightarrow x dx = \frac{dt}{2}\]

\[ \therefore I = \int\frac{dx}{x + 2} - \frac{1}{2}\int\frac{dt}{t} + 2\int\frac{dx}{x^2 + 1^2}\]

\[ = \log \left| x + 2 \right| - \frac{1}{2} \log \left| t \right| + 2 \tan^{- 1} x + C'\]

\[ = \log \left| x + 2 \right| - \frac{1}{2} \log \left| x^2 + 1 \right| + 2 \tan^{- 1} x + C'\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 177]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 36 | Page 177

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1}{1 - \sin x} dx\]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

\[\int \sec^4 2x \text{ dx }\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


`int"x"^"n"."log"  "x"  "dx"`

\[\int\cos\sqrt{x}\ dx\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int x \sin^3 x\ dx\]

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×