Advertisements
Advertisements
Question
Solution
\[\text{ Let I } = \int \frac{x^3 \times \sin^{- 1} x^2}{\sqrt{1 - x^4}}dx\]
\[\text{ Putting } \sin^{- 1} x^2 = t \]
\[ \Rightarrow x^2 = \sin t\]
\[ \Rightarrow \frac{1 \times 2x \text{ dx }}{\sqrt{1 - \left( x^2 \right)^2}} = dt\]
\[ \Rightarrow \frac{x \text{ dx }}{\sqrt{1 - x^4}} = \frac{dt}{2}\]
\[ \therefore I = \int x^2 . \frac{\sin^{- 1} x^2}{\sqrt{1 - x^4}} . \text{ x dx }\]
\[ = \int \left( \sin t \right) . t . \frac{dt}{2}\]
\[ = \frac{1}{2}\int t_I . \sin_{II} t \text{ dt }\]
\[ = \frac{1}{2}\left[ t\int\text{ sin t dt} - \int\left\{ \frac{d}{dt}\left( t \right)\int\text{ sin t dt } \right\}dt \right]\]
\[ = \frac{1}{2} \left[ t . \left( - \cos t \right) - \int 1 . \left( - \cos t \right) dt \right]\]
\[ = \frac{1}{2}\left[ - t \cos t + \sin t \right] + C\]
\[ = \frac{1}{2} \left[ - t\sqrt{1 - \sin^2 t} + \sin t \right] + C\]
\[ = \frac{1}{2} \left[ - \sin^{- 1} \left( x^2 \right) \sqrt{1 - x^4} + x^2 \right] + C\]
APPEARS IN
RELATED QUESTIONS
\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]
` ∫ e^{m sin ^-1 x}/ \sqrt{1-x^2} ` dx
` = ∫1/{sin^3 x cos^ 2x} dx`
Evaluate the following integrals:
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then
\[\int \sec^4 x\ dx\]
\[\int {cosec}^4 2x\ dx\]