English

∫ X 3 Sin − 1 X 2 √ 1 − X 4 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]
Sum

Solution

\[\text{ Let I } = \int \frac{x^3 \times \sin^{- 1} x^2}{\sqrt{1 - x^4}}dx\]
\[\text{ Putting } \sin^{- 1} x^2 = t \]
\[ \Rightarrow x^2 = \sin t\]
\[ \Rightarrow \frac{1 \times 2x  \text{ dx }}{\sqrt{1 - \left( x^2 \right)^2}} = dt\]
\[ \Rightarrow \frac{x    \text{ dx }}{\sqrt{1 - x^4}} = \frac{dt}{2}\]
\[ \therefore I = \int x^2 . \frac{\sin^{- 1} x^2}{\sqrt{1 - x^4}} . \text{ x   dx }\]
\[ = \int \left( \sin t \right) . t . \frac{dt}{2}\]
\[ = \frac{1}{2}\int t_I . \sin_{II} t    \text{ dt }\]
\[ = \frac{1}{2}\left[ t\int\text{ sin  t  dt} - \int\left\{ \frac{d}{dt}\left( t \right)\int\text{ sin  t  dt } \right\}dt \right]\]
\[ = \frac{1}{2} \left[ t . \left( - \cos t \right) - \int 1 . \left( - \cos t \right) dt \right]\]
\[ = \frac{1}{2}\left[ - t \cos t + \sin t \right] + C\]
\[ = \frac{1}{2} \left[ - t\sqrt{1 - \sin^2 t} + \sin t \right] + C\]
\[ = \frac{1}{2} \left[ - \sin^{- 1} \left( x^2 \right) \sqrt{1 - x^4} + x^2 \right] + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.25 [Page 134]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.25 | Q 59 | Page 134

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\frac{x^3}{x - 2} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int x^3 \sin x^4 dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

` = ∫1/{sin^3 x cos^ 2x} dx`


Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int x e^{2x} \text{ dx }\]

\[\int x \text{ sin 2x dx }\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int x \cos^3 x\ dx\]

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int \sec^4 x\ dx\]


\[\int {cosec}^4 2x\ dx\]


\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×