English

∫ √ x 2 − a 2 dx - Mathematics

Advertisements
Advertisements

Question

\[\int\sqrt{x^2 - a^2} \text{ dx}\]
Sum

Solution

\[\text{ Let  I } = \int {1_{II} \cdot} \sqrt{x^2 {  _I} - a ^2} \text{ dx }\]
\[ = \sqrt{x^2 - a^2}\int1 \text{ dx} - \int\left( \frac{d}{dx}\left( \sqrt{x^2 - a^2} \right)\int1 \text{ dx}\right)dx\]
\[ = \sqrt{x^2 - a^2} \cdot x - \int\frac{1 \times 2x}{2 \sqrt{x^2 - a^2}} \cdot x\text{ dx}\]
\[ = \sqrt{x^2 - a^2} \cdot x - \int\left( \frac{x^2 - a^2 + a^2}{\sqrt{x^2 - a^2}} \right)dx\]
\[ = \sqrt{x^2 - a^2} \cdot x - \int\sqrt{x^2 - a^2} dx - a^2 \int\frac{dx}{\sqrt{x^2 - a^2}}\]
\[ = x\sqrt{x^2 - a^2} - I - a^2 \int\frac{dx}{\sqrt{x^2 - a^2}}\]
\[ \therefore 2I = x\sqrt{x^2 - a^2} - a^2 \text{ ln } \left| x + \sqrt{x^2 - a^2} \right|\]
\[ \Rightarrow I = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \text{ ln
}\left| x + \sqrt{x^2 - a^2} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 204]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 85 | Page 204

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{1 - \cot x} dx\]

\[\int e^\sqrt{x} \text{ dx }\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int \sin^4 2x\ dx\]

\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×