Advertisements
Advertisements
Question
\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]
Sum
Solution
\[\int\left[ \frac{2x - 1}{\left( x - 1 \right)^2} \right]dx\]
\[\text{Let x - 1 }= t\]
\[ \Rightarrow x = t + 1\]
\[ \Rightarrow 1 = \frac{dt}{dx}\]
\[Now, \int\left[ \frac{2x - 1}{\left( x - 1 \right)^2} \right]dx\]
\[ = \int\left[ \frac{2\left( t + 1 \right) - t}{t^2} \right]\text{ dt }\]
\[ = \int\left( \frac{2t + 1}{t^2} \right)\text{ dt }\]
\[ = 2\int\frac{dt}{t} + \int t^{- 2} \text{ dt }\]
\[ = \text{ 2 log }\left| t \right| + \frac{t^{- 2 + 1}}{- 2 + 1} + C\]
\[ =\text{ 2 log }\left( x - 1 \right) - \frac{1}{x - 1} + C\]
\[\text{Let x - 1 }= t\]
\[ \Rightarrow x = t + 1\]
\[ \Rightarrow 1 = \frac{dt}{dx}\]
\[Now, \int\left[ \frac{2x - 1}{\left( x - 1 \right)^2} \right]dx\]
\[ = \int\left[ \frac{2\left( t + 1 \right) - t}{t^2} \right]\text{ dt }\]
\[ = \int\left( \frac{2t + 1}{t^2} \right)\text{ dt }\]
\[ = 2\int\frac{dt}{t} + \int t^{- 2} \text{ dt }\]
\[ = \text{ 2 log }\left| t \right| + \frac{t^{- 2 + 1}}{- 2 + 1} + C\]
\[ =\text{ 2 log }\left( x - 1 \right) - \frac{1}{x - 1} + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int \left( 3x + 4 \right)^2 dx\]
\[\int\frac{\tan x}{\sec x + \tan x} dx\]
If f' (x) = 8x3 − 2x, f(2) = 8, find f(x)
\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]
\[\int\left( x + 2 \right) \sqrt{3x + 5} \text{dx} \]
\[\int \text{sin}^2 \left( 2x + 5 \right) \text{dx}\]
\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]
\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]
\[\int\frac{\cos^5 x}{\sin x} dx\]
\[\int\frac{x}{\sqrt{4 - x^4}} dx\]
\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]
\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]
\[\int\frac{x^2}{x^2 + 7x + 10} dx\]
\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]
\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]
\[\int\frac{1}{p + q \tan x} \text{ dx }\]
\[\int x \cos x\ dx\]
\[\int x \text{ sin 2x dx }\]
\[\int x \sin x \cos x\ dx\]
\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2} \text{ dx }\]
\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]
\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{ dx }\]
\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]
\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]
\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]
\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]
Write the anti-derivative of \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]
\[\int\frac{1}{7 + 5 \cos x} dx =\]
\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]
\[\int \sin^3 x \cos^4 x\ \text{ dx }\]
\[\int\frac{1}{1 - x - 4 x^2}\text{ dx }\]
\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]
\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]
\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]
\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int \tan^{- 1} \sqrt{x}\ dx\]
\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]
\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]
Find : \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\]