English

∫ X √ X 2 + 6 X + 10 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]
Sum

Solution

 

\[\text{ Let I }= \int\frac{x dx}{\sqrt{x^2 + 6x + 10}}\]
\[x = \text{ A  }\frac{d}{dx} \left( x^2 + 6x + 10 \right) + B\]
\[x = A \left( 2x + 6 \right) + B\]
\[x = \left( 2A \right) x + 6A + B\]
\[\text{Equating Coefficients of like terms}\]
\[2A = 1\]
\[A = \frac{1}{2}\]
\[6A + B = 0\]
\[6 \times \frac{1}{2} + B = 0\]
\[B = - 3\]
`  I  =  ∫  {x     dx}/{\sqrt{x^2 + 6x + 10}} `
\[ = \int\left( \frac{\frac{1}{2} \left( 2x + 6 \right) - 3}{\sqrt{x^2 + 6x + 10}} \right)dx\]
\[ = \frac{1}{2}\int\frac{\left( 2x + 6 \right) dx}{\sqrt{x^2 + 6x + 10}} - 3\int\frac{dx}{\sqrt{x^2 + 6x + 3^2 - 3^2 + 10}}\]
\[ = \frac{1}{2}\int\frac{\left( 2x + 6 \right) dx}{\sqrt{x^2 + 6x + 10}} - 3\int\frac{dx}{\sqrt{\left( x + 3 \right)^2 + 1^2}}\]
\[\text{ let x }^2 + 6x + 10 = t\]
\[ \Rightarrow \left( 2x + 6 \right) dx = dt\]
\[I = \frac{1}{2}\int\frac{dt}{\sqrt{t}} - 3\int\frac{dx}{\sqrt{\left( x + 3 \right)^2 + 1}}\]
\[ = \frac{1}{2} \times 2\sqrt{t} - 3 \text{ log }\left| x + 3 + \sqrt{\left( x + 3 \right)^2 + 1} \right| + C\]
\[ = \sqrt{t} - 3 \text{ log }\left| x + 3 + \sqrt{x^2 + 6x + 10} \right| + C\]
\[ = \sqrt{x^2 + 6x + 10} - 3 \text{ log } \left| x + 3 + \sqrt{x^2 + 6x + 10} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.21 [Page 110]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.21 | Q 1 | Page 110

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×