English

∫ 1 Sin 2 X + Sin 2 X Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]
Sum

Solution

\[\text{ Let  I } = \int\frac{1}{\sin^2 x + \sin 2x}dx\]

\[ = \int\frac{1}{\sin^2 x + 2 \sin x \cdot \cos x}dx\]

Dividing numerator and denominator by cos2x, we get

\[I = \int\frac{\frac{1}{\cos^2 x}}{\tan^2 x + 2 \tan x}dx\]
\[ = \int\frac{\sec^2 x}{\tan^2 x + 2 \tan x} dx\]
\[\text{ Putting  tan  x = t}\]
\[ \Rightarrow \text{ sec}^2  \text{ x  dx = dt }\]
\[ \therefore I = \int\frac{1}{t^2 + 2t}dt\]
\[ = \int\frac{1}{t^2 + 2t + 1 - 1}dt\]
\[ = \int\frac{1}{\left( t + 1 \right)^2 - 1^2}dt\]
\[ = \frac{1}{2} \text{ ln} \left| \frac{t + 1 - 1}{t + 1 + 1} \right| + C\]
\[ = \frac{1}{2} \text{ ln } \left| \frac{t}{t + 2} \right| + C \]
\[ = \frac{1}{2} \text{ ln} \left| \frac{\tan x}{\tan x + 2} \right| + C ............\left[ \because t = \tan x \right]\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 204]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 59 | Page 204

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int \sin^3 x \cos^6 x \text{ dx }\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int2 x^3 e^{x^2} dx\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]

\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×