Advertisements
Advertisements
Question
\[\int\left( x^e + e^x + e^e \right) dx\]
Sum
Solution
\[\int\left( x^e + e^x + e^e \right)dx\]
\[ = \int x^e dx + \int e^x dx + e^e \int1dx\]
\[ = \frac{x^{e + 1}}{e + 1} + e^x + x \cdot e^e + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]
\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2} \text{dx} \]
\[\int\frac{1 - \cos x}{1 + \cos x} dx\]
\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]
\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]
\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\]
\[\int\frac{e^x + 1}{e^x + x} dx\]
\[\int\sqrt{1 + e^x} . e^x dx\]
\[\int x^3 \sin x^4 dx\]
\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]
\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]
\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]
\[\int {cosec}^4 \text{ 3x } \text{ dx } \]
\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]
\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]
\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]
\[\int\frac{x}{x^2 + 3x + 2} dx\]
\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]
\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{ dx }\]
\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]
`int 1/(cos x - sin x)dx`
\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]
\[\int e^x \sec x \left( 1 + \tan x \right) dx\]
\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]
\[\int\frac{x^2 + 1}{x^2 - 1} dx\]
\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]
\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]
\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]
\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]
\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]
\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]
\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]
\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]
\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]
\[\int\text{ cos x cos 2x cos 3x dx}\]
\[\int\sqrt{a^2 + x^2} \text{ dx }\]
\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]
\[\int\frac{x}{x^3 - 1} \text{ dx}\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]