English

∫ ( 2 X + 3 ) √ 4 X 2 + 5 X + 6 Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]
Sum

Solution

\[ \text{ Let I} = \int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]
\[\text{ let 2x + 3 = A}\frac{d}{dx}\left( 4 x^2 + 5x + 6 \right) + B\]
\[ \Rightarrow 2x + 3 = A \left( 8x + 5 \right) + B . . . (1)\]
\[\text{By equating coefficients of like terms we get}, \]
\[\text{ 2x = 8A x }\]
\[ \Rightarrow A = \frac{1}{4}\]
\[ \text{ and  5A + B = 3}\]
\[ \Rightarrow \frac{5}{4} + B = 3\]
\[ \Rightarrow B = 3 - \frac{5}{4}\]
\[ = \frac{7}{4}\]
\[\text{Thus, by substituting the values of A and B in eq (1) we ge}t\]
\[I = \int \left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]
\[ = \int\left[ \frac{1}{4}\left( 8x + 5 \right) + \frac{7}{4} \right] \sqrt{4 x^2 + 5x + 6} \text{ dx}\]
\[ = \frac{1}{4}\int\left( 8x + 5 \right) \sqrt{4 x^2 + 5x + 6} dx + \frac{7}{4} \int\sqrt{4 x^2 + 5x + 6} \text{ dx}\]
\[Putting\ 4 x^2 + 5x + 6 = \text{    t   in the first integral}\]
\[ \Rightarrow \left( 8x + 5 \right) \text{ dx}= dt\]
\[ \therefore I = \frac{1}{4}\int\sqrt{t} \cdot dt + \frac{7 \times 2}{4}\int\sqrt{x^2 + \frac{5x}{4} + \frac{3}{2}} \text{ dx}\]
\[ = \frac{1}{4}\int t^\frac{1}{2} \cdot dt + \frac{7}{2}\int\sqrt{x^2 - \frac{5x}{4} + \left( \frac{5}{8} \right)^2 - \left( \frac{5}{8} \right)^2 + \frac{3}{2}} \text{ dx}\]
\[ = \frac{1}{4} \left[ \frac{t^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] + \frac{7}{2}\int\sqrt{\left( x + \frac{5}{8} \right)^2 - \frac{25}{64} + \frac{3}{2}} \text{ dx}\]
\[ = \frac{1}{4} \times \frac{2}{3} t^\frac{3}{2} + \frac{7}{2}\int\sqrt{\left( x + \frac{5}{8} \right)^2 + \frac{- 25 + 96}{64}}\]
\[ = \frac{1}{6} t^\frac{3}{2} + \frac{7}{2}\int\sqrt{\left( x + \frac{5}{8} \right)^2 + \left( \frac{\sqrt{71}}{8} \right)^2}\]
\[ = \frac{1}{6} \left( 4 x^2 + 5x + 6 \right)^\frac{3}{2} + \frac{7}{2}\left[ \frac{x + \frac{5}{8}}{2}\sqrt{\left( x + \frac{5}{8} \right)^2 + \left( \frac{\sqrt{71}}{8} \right)^2} + \frac{71}{64 \times 2} \text{ ln} \left| x + \frac{5}{8} + \sqrt{\left( x + \frac{5}{8} \right)^2 + \left( \frac{\sqrt{71}}{8} \right)^2} \right| \right] + C ................\left[ \because \int\sqrt{a^2 + x^2} \text{ dx}= \frac{1}{2}x\sqrt{a^2 + x^2} + \frac{1}{2} a^2 \text{ ln}\left| x + \sqrt{x^2 + a^2} \right| + C \right]\]
\[ = \frac{1}{6} \left( 4 x^2 + 5x + 6 \right)^\frac{3}{2} + \frac{7}{2} \frac{\left( 8x + 5 \right)}{16} \sqrt{x^2 + \frac{5}{4}x + \frac{3}{2}} + \frac{71 \times 7}{2 \times 128} \text{ ln} \left| x + \frac{5}{8} + \sqrt{x^2 + \frac{5}{4}x + \frac{3}{2}} \right| + C\]
\[ = \frac{1}{6} \left( 4 x^2 + 5x + 6 \right)^\frac{3}{2} + \frac{7 \times 2 \left( 8x + 5 \right)}{4 \times 16} \sqrt{x^2 + \frac{5}{4}x + \frac{3}{2}} + \frac{497}{256} \text{ ln} \left| x + \frac{5}{8} + \sqrt{x^2 + \frac{5}{4}x + \frac{3}{2}} \right| + C\]
\[ = \frac{1}{6} \left( 4 x^2 + 5x + 6 \right) \sqrt{4 x^2 + 5x + 6} + \frac{7}{64} \left( 8x + 5 \right) \sqrt{4 x^2 + 5x + 6} + \frac{497}{256} \text{ ln }\left| x + \frac{5}{6} + \sqrt{x^2 + \frac{5}{4}x + \frac{3}{2}} \right| + C\]
\[ = \sqrt{4 x^2 + 5x + 6} \left[ \frac{4 x^2 + 5x + 6}{6} + \frac{7}{64} \left( 8x + 5 \right) \right] + \frac{497}{256} \text{ ln} \left| x + \frac{5}{8} + \sqrt{x^2 + \frac{5}{4}x + \frac{3}{2}} \right| + C\]
\[ = \sqrt{4 x^2 + 5x + 6} \left[ \frac{128 x^2 + 328x + 297}{192} \right] + \text{ ln} \left| x + \frac{5}{8} + \sqrt{x^2 + \frac{5}{4}x + \frac{3}{2}} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 204]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 90 | Page 204

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


`∫     cos ^4  2x   dx `


\[\int \sin^2 \frac{x}{2} dx\]

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int x e^x \text{ dx }\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int x \sin x \cos x\ dx\]

 


\[\int x \sin x \cos 2x\ dx\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int \sin^4 2x\ dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int \sin^5 x\ dx\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×