Advertisements
Advertisements
Question
\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]
Sum
Solution
\[\text{ Let I} = \int\frac{\log \left( \log x \right) dx}{x}\]
\[\text{ Putting log x = t}\]
\[ \Rightarrow \frac{1}{x} dx = dt\]
\[ \therefore I = \int 1_{II} \cdot \log _I t \cdot \text{ dt}\]
\[ = \log t\int1\text{ dt }- \int\left\{ \frac{d}{dt}\left( \log t \right)\int1 dt \right\}dt\]
\[ = \log t \cdot t - \int\frac{1}{t} \times t\text{ dt}\]
\[ = \log t \cdot t - \int dt\]
\[ = \log t \cdot t - t + C\]
\[ = t \left( \log t - 1 \right) + C\]
\[ = \log x \left( \text{ log} \left( \log x \right) - 1 \right) + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]
\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]
\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]
\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]
\[\int\frac{\tan x}{\sec x + \tan x} dx\]
\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]
` ∫ 1/ {1+ cos 3x} ` dx
\[\int \text{sin}^2 \left( 2x + 5 \right) \text{dx}\]
\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]
\[\int\frac{1}{ x \text{log x } \text{log }\left( \text{log x }\right)} dx\]
\[\int x^3 \cos x^4 dx\]
\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]
\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]
\[\int\frac{1}{4 x^2 + 12x + 5} dx\]
\[\int\frac{1}{1 + x - x^2} \text{ dx }\]
\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]
\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]
\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]
\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]
\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]
\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]
\[\int x e^{2x} \text{ dx }\]
\[\int e^\sqrt{x} \text{ dx }\]
\[\int \sin^3 \sqrt{x}\ dx\]
\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]
\[\int e^x \sec x \left( 1 + \tan x \right) dx\]
\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]
\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]
\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{ dx }\]
\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]
\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]
\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]
\[\int\left( x - 1 \right) e^{- x} dx\] is equal to
\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]
\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]
\[\int \sin^5 x\ dx\]
\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]
\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]
\[\int\frac{x^2}{x^2 + 7x + 10} dx\]