Advertisements
Advertisements
Question
\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]
Sum
Solution
\[\int \frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}}dx\]
\[ = \int \left( \frac{1}{\sqrt{x}} + \frac{x}{\sqrt{x}} + 2\frac{\sqrt{x}}{\sqrt{x}} \right)dx\]
\[ = \int\left( x^{- \frac{1}{2}} + x^\frac{1}{2} + 2 \right)dx\]
\[ = \left[ \frac{x^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right] + \left[ \frac{x^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] + 2x + C\]
\[ = 2\sqrt{x} + \frac{2}{3} x^\frac{3}{2} + 2x + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec } {x }- \cot x} dx\]
\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]
` ∫ {sin 2x} /{a cos^2 x + b sin^2 x } ` dx
\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]
\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]
\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]
\[\ ∫ x \text{ e}^{x^2} dx\]
\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]
\[\ \int\ x \left( 1 - x \right)^{23} dx\]
\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]
` ∫ {1}/{a^2 x^2- b^2}dx`
\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]
\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]
\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]
\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]
\[\int\frac{1}{3 + 4 \cot x} dx\]
\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]
\[\int x \text{ sin 2x dx }\]
\[\int x \cos^2 x\ dx\]
\[\int x \sin x \cos 2x\ dx\]
\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]
\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]
\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx }\]
\[\int\sqrt{2ax - x^2} \text{ dx}\]
\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{ dx }\]
\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]
If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]
\[\int\sqrt{\frac{x}{1 - x}} dx\] is equal to
\[\int\frac{1}{e^x + e^{- x}} dx\]
\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]
\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]
\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int\frac{1}{4 x^2 + 4x + 5} dx\]
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]
\[\int\sqrt{x^2 - a^2} \text{ dx}\]
\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]
\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]