English

∫ Sin X √ 1 + Sin X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]
Sum

Solution

\[\text{ We  have ,} \]
\[I = \int\frac{\sin x}{\sqrt{1 + \sin x}} \text{ dx }\]
\[I = \int\frac{2 \sin\frac{x}{2}\cos\frac{x}{2}}{\sqrt{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2} + \text{ 2 }\sin\frac{x}{2}\cos\frac{x}{2}}} \text{  dx }\]
\[I = \int\frac{2 \sin\frac{x}{2}\cos\frac{x}{2}}{\sqrt{\left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2}} \text{  dx }\]
\[I = \int\frac{2 \sin\frac{x}{2}\cos\frac{x}{2}}{\sin\frac{x}{2} + \cos\frac{x}{2}} \text{  dx }\]
\[I = \int\frac{1 + 2\sin\frac{x}{2} \cos\frac{x}{2} - 1}{\sin x + \cos x} \text{  dx }\]
\[I = \int\frac{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2} + 2\sin\frac{x}{2} \cos\frac{x}{2} - 1}{\sin x + \cos x} \text{  dx }\]
\[I = \int\frac{\left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 - 1}{\sin\frac{x}{2} + \cos\frac{x}{2}} \text{  dx }\]
\[I = \int\frac{\left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2}{\sin\frac{x}{2} + \cos\frac{x}{2}} \text{  dx }- \int\frac{1}{\sin\frac{x}{2} + \cos\frac{x}{2}} \text{  dx }\]
\[I = \int\left( \sin\frac{x}{2} + \cos\frac{x}{2} \right) dx - \int\frac{1}{\sin\frac{x}{2} + \cos\frac{x}{2}} \text{  dx }\]
\[I = 2\left( - \cos\frac{x}{2} + \sin\frac{x}{2} \right) + C_1 - \frac{1}{\sqrt{2}}\int\frac{1}{\frac{1}{\sqrt{2}}\left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)} \text{  dx }\]
\[I = 2\left( - \cos\frac{x}{2} + \sin\frac{x}{2} \right) + C_1 - \frac{1}{\sqrt{2}}\int\frac{1}{\sin\frac{x}{2} cos\frac{\pi}{4} + \cos\frac{x}{2} sin\frac{\pi}{4}} \text{  dx }\]
\[I = 2\left( - \cos\frac{x}{2} + \sin\frac{x}{2} \right) + C_1 - \frac{1}{\sqrt{2}}\int\frac{1}{\sin\left( \frac{x}{2} + \frac{\pi}{4} \right)} \text{  dx }\]
\[I = 2\left( - \cos\frac{x}{2} + \sin\frac{x}{2} \right) + C_1 - \frac{1}{\sqrt{2}}\int \text{ cosec} \left( \frac{x}{2} + \frac{\pi}{4} \right) \text{  dx }\]
\[I = 2\left( - \cos\frac{x}{2} + \sin\frac{x}{2} \right) - \sqrt{2}\text{ log}\left| \text{ tan}\left( \frac{x}{4} + \frac{\pi}{8} \right) \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 203]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 26 | Page 203

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int \sec^4 2x \text{ dx }\]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int x^2 \text{ cos x dx }\]

\[\int x \cos^2 x\ dx\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int x \cos^3 x\ dx\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int \tan^3 x\ dx\]

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×