English

∫ Sin X Cos 2 X Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]
Sum

Solution

\[\text{ Let I} = \int\frac{\sin x}{\text{ cos  2  x}} dx\]
\[ = \int\left( \frac{\sin x}{2 \cos^2 x - 1} \right) dx ...................\left[ \because \cos 2x = 2 \cos^2 x - 1 \right] \]
\[\text{ Putting cos x = t}\]
\[ \Rightarrow - \text{ sin x dx = dt}\]
\[ \Rightarrow \text{ sin  x  dx  = - dt}  \]
\[ \therefore I = \int\frac{- dt}{2 t^2 - 1}\]
\[ = \frac{1}{2}\int\frac{- dt}{t^2 - \frac{1}{2}}\]
\[ = \frac{- 1}{2}\int\frac{dt}{t^2 - \left( \frac{1}{\sqrt{2}} \right)^2}\]
` =   -1 / 2  ×  1/ 2 × 1/1\sqrt2    In    |{t -1/\sqrt2}/{t+1/\sqrt2 }| + C      ..... [ ∵ ∫ {1}/{x^2 - a^2} = {1}/{2a}\text{ ln } | {x - a}/{x + a} | + C ]  `
\[ = - \frac{1}{2\sqrt{2}} \text{ ln} \left| \frac{\sqrt{2}t - 1}{\sqrt{2}t + 1} \right| + C\]
\[ = - \frac{1}{2\sqrt{2}} \text{ ln }\left| \frac{\sqrt{2} \cos x - 1}{\sqrt{2} \cos x + 1} \right| + C ............\left[ \because t = \cos x \right]\]
\[ = \frac{1}{2\sqrt{2}} \text{ ln} \left| \frac{\sqrt{2} \cos x + 1}{\sqrt{2} \cos x - 1} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 203]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 27 | Page 203

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\frac{x^3}{x - 2} dx\]

Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×