English

∫ Tan X √ Cos X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]
Sum

Solution

\[\int\frac{\tan x}{\sqrt{\cos x}}dx\]
\[ \Rightarrow \int\frac{\sin x}{\cos x \sqrt{\cos x}} dx\]
\[ \Rightarrow \int\frac{\sin x}{\cos {}^\frac{3}{2} x}dx\]
\[Let \cos x = t\]
\[ \Rightarrow - \text{sin x dx }= dt\]
\[ \Rightarrow \sin x = - \frac{dt}{dx}\]
\[Now, \int\frac{\sin x}{\cos {}^\frac{3}{2} x}dx\]


\[ = \int - \frac{1}{t^\frac{3}{2}}dt\]

 


\[ = - \int t^{- \frac{3}{2}} dt\]

 


\[ = - \left[ \frac{t^{- \frac{3}{2} + 1}}{\frac{- 3}{2} + 1} \right] + C\]
\[ = \frac{2}{\sqrt{t}} + C\]
\[ = \frac{2}{\sqrt{\cos x}} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.09 [Page 58]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.09 | Q 12 | Page 58

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

` ∫  1/ {1+ cos   3x}  ` dx


Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int \cot^6 x \text{ dx }\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×