Advertisements
Advertisements
Question
\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]
Sum
Solution
\[\int\frac{\tan x}{\sqrt{\cos x}}dx\]
\[ \Rightarrow \int\frac{\sin x}{\cos x \sqrt{\cos x}} dx\]
\[ \Rightarrow \int\frac{\sin x}{\cos {}^\frac{3}{2} x}dx\]
\[Let \cos x = t\]
\[ \Rightarrow - \text{sin x dx }= dt\]
\[ \Rightarrow \sin x = - \frac{dt}{dx}\]
\[Now, \int\frac{\sin x}{\cos {}^\frac{3}{2} x}dx\]
\[ = \int - \frac{1}{t^\frac{3}{2}}dt\]
\[ = - \int t^{- \frac{3}{2}} dt\]
\[ = - \left[ \frac{t^{- \frac{3}{2} + 1}}{\frac{- 3}{2} + 1} \right] + C\]
\[ = \frac{2}{\sqrt{t}} + C\]
\[ = \frac{2}{\sqrt{\cos x}} + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]
\[\int\frac{\sin^2 x}{1 + \cos x} \text{dx} \]
\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]
` ∫ 1/ {1+ cos 3x} ` dx
Integrate the following integrals:
\[\int\text{sin 2x sin 4x sin 6x dx} \]
\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]
\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]
\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]
\[\int2x \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]
\[\ ∫ x \text{ e}^{x^2} dx\]
\[\int\frac{x^2}{\sqrt{1 - x}} dx\]
\[\int {cosec}^4 \text{ 3x } \text{ dx } \]
\[\int \cot^6 x \text{ dx }\]
` ∫ {1}/{a^2 x^2- b^2}dx`
\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]
\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]
\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]
\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]
\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{ dx}\]
\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]
\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]
\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]
\[\int\frac{1}{1 - \tan x} \text{ dx }\]
\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]
\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]
\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]
\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]
\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]
\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]
\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]
\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]
\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]
\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]
\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]
\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]
\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]
\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]
\[\int\frac{x^2}{x^2 + 7x + 10} dx\]