English

∫ E X ( X − 4 ) ( X − 2 ) 3 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]
Sum

Solution

\[\text{ Let I }= \int e^x \left( \frac{x - 4}{\left( x - 2 \right)^3} \right)dx\]

\[ = \int e^x \left[ \frac{x - 2 - 2}{\left( x - 2 \right)^3} \right]dx\]

\[ = \int e^x \left[ \frac{1}{\left( x - 2 \right)^2} - \frac{2}{\left( x - 2 \right)^3} \right]dx\]

\[\text{ Here,  f(x) }= \frac{1}{\left( x - 2 \right)^2}\]

\[ \Rightarrow f'(x) = \frac{- 2}{\left( x - 2 \right)^3}\]

\[\text{ Put e}^x f(x) = t\]

\[ \Rightarrow e^x \frac{1}{\left( x - 2 \right)^2} = t\]

\[\text{ Diff both sides w . r . t x }\]

\[\left[ e^x \frac{1}{\left( x - 2 \right)^2} + e^x \frac{- 2}{\left( x - 2 \right)^3} \right]dx = dt\]

\[ \text{∴  I }= \int dt\]

\[ = t + C\]

\[ = \frac{e^x}{\left( x - 2 \right)^2} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.26 [Page 143]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.26 | Q 23 | Page 143

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

\[\int \left( a \tan x + b \cot x \right)^2 dx\]

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

`∫     cos ^4  2x   dx `


\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int \sin^3 x \cos^6 x \text{ dx }\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int x \sin x \cos x\ dx\]

 


 
` ∫  x tan ^2 x dx 

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int \sec^6 x\ dx\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×