Advertisements
Advertisements
Question
\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]
Sum
Solution
\[\int\left( \frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} \right)dx\]
\[ = \int\left( \frac{5 \cos^3 x}{2 \sin^2 x \cos^2 x} + \frac{6 \sin^3 x}{2 \sin^2 x \cos^2 x} \right)dx\]
\[ = \int\left( \frac{5}{2} \frac{\cos x}{\sin^2 x} + 3\frac{\sin x}{\cos^2 x} \right)dx\]
\[ = \frac{5}{2}\int\left( \frac{\cos x}{\sin x} \times \frac{1}{\sin x} \right)dx + 3\int\frac{\sin x}{\cos x} \times \frac{1}{\cos x}dx\]
`= {5}/{2}∫("cosec "x cot x ) dx + 3 ∫ sec x tan x dx`
\[ = \frac{5}{2}\left( - \text{cosec x} \right) + 3 \sec x + C\]
\[ = - \frac{5}{2}\text{cosec x} + 3 \sec x + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]
\[\int \left( 3x + 4 \right)^2 dx\]
\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]
\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]
\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\]
` ∫ {sec x "cosec " x}/{log ( tan x) }` dx
\[\int\frac{\cos^5 x}{\sin x} dx\]
\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]
` ∫ tan^3 x sec^2 x dx `
\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]
\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]
\[\int\frac{x^2}{x^2 + 7x + 10} dx\]
\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]
\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]
\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]
\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]
\[\int x^2 \sin^2 x\ dx\]
\[\int x \sin x \cos x\ dx\]
\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]
\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]
\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]
\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]
\[\int\sqrt{3 - x^2} \text{ dx}\]
\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{ dx }\]
\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]
\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]
\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]
\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]
\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]
\[\int\frac{1}{\sin x + \sin 2x} dx\]
\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]
\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]
\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]
\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]
\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]
\[\int\text{ cos x cos 2x cos 3x dx}\]
\[\int x\sqrt{1 + x - x^2}\text{ dx }\]
\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int \tan^{- 1} \sqrt{x}\ dx\]
\[\int \sec^{- 1} \sqrt{x}\ dx\]