Advertisements
Advertisements
Question
\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]
Sum
Solution
\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]
\[ = \int\left( x + \frac{1}{x} - 2 \right)dx\]
` = ∫ x dx + ∫ dx/x - 2\ ∫ x dx`
`= x^2 / 2 + In | x| -2 x +C`
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]
\[\int\frac{1 - \cos x}{1 + \cos x} dx\]
\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]
\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]
\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]
\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]
\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]
\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]
\[\int \sin^4 x \cos^3 x \text{ dx }\]
\[\int\frac{1}{x^2 - 10x + 34} dx\]
\[\int\frac{3 x^5}{1 + x^{12}} dx\]
\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]
\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]
\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]
`int"x"^"n"."log" "x" "dx"`
\[\int \sin^3 \sqrt{x}\ dx\]
\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{ dx }\]
\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]
\[\int\frac{1}{1 + x + x^2 + x^3} dx\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]
\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]
Write a value of
\[\int e^{3 \text{ log x}} x^4\text{ dx}\]
\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then
\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]
\[\int \sin^4 2x\ dx\]
\[\int \tan^5 x\ dx\]
\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]
\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]
\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]
\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]
\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]
\[\int\sqrt{a^2 + x^2} \text{ dx }\]
\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]
\[\int \sin^3 \left( 2x + 1 \right) \text{dx}\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`