English

∫ x 2 √ 1 − x dx - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]
Sum

Solution

\[\text{We have}, \]
\[I = \int\frac{x^2}{\sqrt{1 - x}} dx\]
\[\text{ Let, 1 - x = t}^2 \]
\[\text{Differentiating both sides we get}\]
\[ - \text{ dx = 2t dt}\]
\[\text{Now, integration becomes}, \]
\[I = - \int\frac{\left( 1 - t^2 \right)^2}{t} 2tdt\]
\[ = - 2\int \left( 1 - t^2 \right)^2 dt\]
\[ = - 2\int\left( 1 - 2 t^2 + t^4 \right) dt\]
\[ = - 2\left[ t - \frac{2 t^3}{3} + \frac{t^5}{5} \right] + C\]
\[ = \frac{- 2}{15}t\left[ 3 t^4 - 10 t^2 + 15 \right] + C\]
\[ = \frac{- 2}{15}\sqrt{1 - x}\left[ 3 \left( 1 - x \right)^2 - 10\left( 1 - x \right) + 15 \right] + C\]
\[ = \frac{- 2}{15}\sqrt{1 - x}\left[ 3\left( 1 - 2x + x^2 \right) - 10\left( 1 - x \right) + 15 \right] + C\]
\[ = \frac{- 2}{15}\sqrt{1 - x}\left[ 3 x^2 - 6x + 3 - 10 + 10x + 15 \right] + C\]
\[ = \frac{- 2}{15}\sqrt{1 - x}\left[ 3 x^2 + 4x + 8 \right] + C\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 204]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 102 | Page 204

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int \cos^2 \text{nx dx}\]

\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

` ∫  sec^6   x  tan    x   dx `

\[\int \sin^5 x \cos x \text{ dx }\]

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int x e^x \text{ dx }\]

\[\int x \text{ sin 2x dx }\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int2 x^3 e^{x^2} dx\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int x^2 \tan^{- 1} x\ dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×