English

∫ Cos 2 N X D X - Mathematics

Advertisements
Advertisements

Question

\[\int \cos^2 \text{nx dx}\]
Sum

Solution

\[\int \cos^2 \text{nx dx}\]
\[ = \int\left[ \frac{1 + \cos 2nx}{2} \right] dx \left[ \therefore \cos^2 x = \frac{1 + \cos 2x}{2} \right]\]
\[ = \frac{1}{2}\int\left( 1 + \cos 2nx \right)dx\]
\[ = \frac{1}{2}\left[ x + \frac{\sin 2nx}{2n} \right] + C\]
\[ = \frac{x}{2} + \frac{\sin 2nx}{4n} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.06 [Page 36]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.06 | Q 7 | Page 36

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

\[\int \cos^2 \frac{x}{2} dx\]

 


`  ∫  sin 4x cos  7x  dx  `

\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]

\[\int x^2 e^{- x} \text{ dx }\]

 
` ∫  x tan ^2 x dx 

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×