English

∫ 1 X 2 ( X 4 + 1 ) 3 / 4 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]
Sum

Solution

\[\int\frac{dx}{x^2 \left( x^4 + 1 \right)^\frac{3}{4}}\]
\[ = \int\frac{dx}{x^2 \left[ x^4 \left( 1 + \frac{1}{x^4} \right) \right]^\frac{3}{4}}\]
\[ = \int \frac{dx}{x^2 . x^3 \left( 1 + \frac{1}{x^4} \right)^\frac{3}{4}}\]
\[ = \int\frac{\left( 1 + \frac{1}{x^4} \right)^{- \frac{3}{4}}}{x^5}  \text{ dx }\]
\[\text{Let 1 }+ \frac{1}{x^4} = t\]
\[ \Rightarrow - \frac{4}{x^5}dx = \text{ dt }\]
\[ \Rightarrow \frac{dx}{x^5} = - \frac{dt}{4}\]
\[Now, \int\frac{\left( 1 + \frac{1}{x^4} \right)^{- \frac{3}{4}}}{x^5}\text{ dx }\]
\[ = - \frac{1}{4} \int t^{- \frac{3}{4}} \text{ dt }\]
\[ = - \frac{1}{4} \left[ \frac{t^{- \frac{3}{4} + 1}}{- \frac{3}{4} + 1} \right] + C\]
\[ = - t^\frac{1}{4} + C\]
\[ = - \left( 1 + \frac{1}{x^4} \right)^\frac{1}{4} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.09 [Page 59]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.09 | Q 71 | Page 59

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int x^3 \sin x^4 dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

` ∫   tan   x   sec^4  x   dx  `


\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int x \sin x \cos x\ dx\]

 


` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int \sec^{- 1} \sqrt{x}\ dx\]

 
` ∫  x tan ^2 x dx 

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×