English

∫ X 2 − 2 X 5 − X Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]
Sum

Solution

\[\text{We have}, \]
\[I = \int\left( \frac{x^2 - 2}{x^5 - x} \right) dx\]
\[ = \int\frac{\left( x^2 - 2 \right)}{x \left( x^4 - 1 \right)}dx\]
\[ = \int\frac{x \left( x^2 - 2 \right)}{x^2 \left( x^2 - 1 \right) \left( x^2 + 1 \right)}dx\]
\[\text{ Putting x^2 = t}\]
\[ \Rightarrow 2x\ dx = dt\]
\[ \Rightarrow x\ dx = \frac{dt}{2}\]
\[ \therefore I = \frac{1}{2}\int\frac{\left( t - 2 \right)}{t \left( t - 1 \right) \left( t + 1 \right)}\text{  dt }\]
\[\text{ Let }  \frac{t - 2}{t \left( t - 1 \right) \left( t + 1 \right)} = \frac{A}{t} + \frac{B}{t - 1} + \frac{C}{t + 1}\]
\[ \Rightarrow \frac{t - 2}{t \left( t - 1 \right) \left( t + 1 \right)} = \frac{A \left( t - 1 \right) \left( t + 1 \right) + Bt \left( t + 1 \right) + Ct \cdot \left( t - 1 \right)}{t \left( t - 1 \right) \left( t + 1 \right)}\]
\[ \Rightarrow t - 2 = A \left( t - 1 \right) \left( t + 1 \right) + B t \left( t + 1 \right) + C t \left( t - 1 \right)\]
\[\text{ Putting t = 1}\]
\[ \therefore 1 - 2 = B \times 2\]
\[ \Rightarrow B = - \frac{1}{2}\]
\[\text{ Putting t = 0}\]
\[ \therefore - 2 = A \left( - 1 \right)\]
\[ \Rightarrow A = 2\]
\[\text{ Putting t = - 1}\]
\[ \therefore - 3 = C \left( - 1 \right) \left( - 2 \right)\]
\[ \Rightarrow C = - \frac{3}{2}\]
\[ \therefore I = \frac{2}{2}\int\frac{dt}{t} - \frac{1}{2 \times 2}\int\frac{dt}{t - 1} - \frac{3}{2 \times 2}\int\frac{d}{t + 1}\]
\[ = \text{ log} \left| t \right| - \frac{1}{4} \text{ log }\left| t - 1 \right| - \frac{3}{4} \text{ log} \left| t + 1 \right| + C\]
\[ = \text{ log }\left| x^2 \right| - \frac{1}{4} \text{ log }\left| x^2 - 1 \right| - \frac{3}{4} \text{ log} \left| x^2 + 1 \right| + C\]
\[ = 2 \text{ log } \left| x \right| - \frac{1}{4} \text{ log} \left| x^2 - 1 \right| - \frac{3}{4} \text{ log} \left| x^2 + 1 \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 205]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 126 | Page 205

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int \cot^4 x\ dx\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×