English

∫ 5 X ( X + 1 ) ( X 2 − 4 ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]
Sum

Solution

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)}dx\]
\[\text{Let }\frac{5x}{\left( x + 1 \right) \left( x - 2 \right) \left( x + 2 \right)} = \frac{A}{x + 1} + \frac{B}{x - 2} + \frac{C}{x + 2}\]
\[ \Rightarrow \frac{5x}{\left( x + 1 \right) \left( x - 2 \right) \left( x + 2 \right)} = \frac{A \left( x - 2 \right) \left( x + 2 \right) + B \left( x + 1 \right) \left( x + 2 \right) + C \left( x + 1 \right) \left( x - 2 \right)}{\left( x + 1 \right) \left( x - 2 \right) \left( x + 2 \right)}\]
\[ \Rightarrow 5x = A \left( x - 2 \right) \left( x + 2 \right) + B \left( x + 1 \right) \left( x + 2 \right) + C \left( x + 1 \right) \left( x - 2 \right)...........(1)\]
\[\text{Putting }x - 2 = 0\text{ or }x = 2\text{ in eq. (1)}\]
\[ \Rightarrow 5 \times 2 = B \left( 2 + 1 \right) \left( 2 + 2 \right)\]
\[ \Rightarrow B = \frac{10}{3 \times 4}\]
\[ = \frac{5}{6}\]
\[\text{Putting }x + 2 = 0\text{ or }x = - 2\text{ in eq. (1)}\]
\[ \Rightarrow 5 \times - 2 = C \left( - 2 + 1 \right) \left( - 2 - 2 \right)\]
\[ \Rightarrow \frac{- 10}{- 1 \times - 4} = C\]
\[ \Rightarrow C = \frac{- 5}{2}\]
\[\text{Putting }x + 1 = 0\text{ or }x = - 1\text{ in eq. (1)}\]
\[ \Rightarrow - 5 = A \left( - 1 - 2 \right) \left( - 1 + 2 \right)\]
\[ \Rightarrow \frac{- 5}{- 3} = A\]
\[ \Rightarrow A = \frac{5}{3}\]
\[ \therefore \frac{5x}{\left( x + 1 \right) \left( x - 2 \right) \left( x + 2 \right)} = \frac{5}{3} \times \frac{1}{x + 1} + \frac{5}{6 \left( x - 2 \right)} - \frac{5}{2 \left( x + 2 \right)}\]
\[ \Rightarrow \frac{5x}{\left( x + 1 \right) \left( x - 2 \right) \left( x + 2 \right)} = \frac{5}{6} \times \frac{2}{x + 1} + \frac{5}{6 \left( x - 2 \right)} - \frac{5}{6} \left( \frac{3}{x + 2} \right)\]
\[ \therefore \int\frac{5x}{\left( x + 1 \right) \left( x - 2 \right) \left( x + 2 \right)}dx = \frac{5}{6}\int\frac{2}{x + 1} dx + \frac{5}{6}\int\frac{1}{x - 2}dx - \frac{5}{6}\int\frac{3}{x + 2} dx\]
\[ = \frac{5}{6}\left[ 2 \ln \left| x + 1 \right| + \ln \left| x - 2 \right| - 3 \ln \left| x + 2 \right| \right] + C\]
\[ = \frac{5}{6} \left[ \ln \left| x + 1 \right|^2 + \ln \left| x - 2 \right| - \ln \left| x + 2 \right|^3 \right] + C\]
\[ = \frac{5}{6} \ln \left| \frac{\left( x + 1 \right)^2 \left( x - 2 \right)}{\left( x + 2 \right)^3} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 176]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 7 | Page 176

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int x^2 \sin^2 x\ dx\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int \sec^4 x\ dx\]


\[\int {cosec}^4 2x\ dx\]


\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int x \sec^2 2x\ dx\]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×