English

∫ x 3 ( log x ) 2 dx - Mathematics

Advertisements
Advertisements

Question

\[\int x^3 \left( \log x \right)^2\text{  dx }\]
Sum

Solution

\[\int {x^3}_{II} \cdot \left( \log_I x \right)^2 \cdot dx\]
\[ = \left( \log x^2 \right)\int x^3 dx - \int\frac{2 \log x}{x} \times \frac{x^4}{4} \text{  dx} \]
\[ = \left( \log x \right)^2 \times \frac{x^4}{4} - \frac{1}{2}\int \log_I x  \cdot {x^3}_{II} \text{  dx }\]
\[ = \left( \log x \right)^2 \times \frac{x^4}{4} - \frac{1}{2}\left[ \log x\int x^3 dx - \int\left\{ \frac{d}{dx}\left( \log x \right)\int x^3 dx \right\}dx \right]\]
\[ = \left( \log x \right)^2 \times \frac{x^4}{4} - \frac{1}{2} \left[ \log x \cdot \frac{x^4}{4} - \int\frac{1}{x} \times \frac{x^4}{4}dx \right]\]
\[ = \left( \log x \right)^2 \times \frac{x^4}{4} - \frac{1}{2} \left[ \log x \cdot \frac{x^4}{4} - \frac{1}{4}\int x^3 dx \right]\]
\[ = \left( \log x \right)^2 \times \frac{x^4}{4} - \frac{1}{2} \left[ \log x \cdot \frac{x^4}{4} - \frac{x^4}{16} \right] + C\]
\[ = \left( \log x \right)^2 \times \frac{x^4}{4} - \frac{\log x \cdot x^4}{8} + \frac{x^4}{32} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 204]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 100 | Page 204

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int x^3 \sin x^4 dx\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

` ∫   tan   x   sec^4  x   dx  `


\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int x \text{ sin 2x dx }\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int \sin^4 2x\ dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int \cot^5 x\ dx\]

\[\int \cos^5 x\ dx\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×