Advertisements
Advertisements
Question
Solution
\[\int\left( \frac{1 - \cos x}{1 + \cos x} \right)dx\]
\[ = \int\frac{\left( 1 - \cos x \right)^2}{1 - \cos^2 x}dx\]
\[ = \int\frac{1 + \cos^2 x - 2\cos x}{\sin^2 x}dx\]
\[ = \int \left( \frac{1}{\sin^2 x} + \frac{\cos^2 x}{\sin^2 x} - \frac{2\cos x}{\sin^2 x} \right)dx\]
\[ = \int \left( {cosec}^2 x + \cot^2 x - 2\cot x . \text{cosec x} \right)dx\]
\[ = \int \left( {cosec}^2 x + {cosec}^2 x - 1 - 2\cot x . cosec x \right)dx\]
\[ = \int \left( 2 {cosec}^2 x - 1 - 2\cot x . \text{cosec x} \right)dx\]
\[ = \int2 {cosec}^2 x dx - \int1 dx - \int2\cot x . \text{cosec x} dx\]
\[ = - 2\cot x - x + \text{2 cosec x} + C\]
\[ = 2\left( \text{cosec x }- \cot x \right) - x + C\]
APPEARS IN
RELATED QUESTIONS
If f' (x) = x − \[\frac{1}{x^2}\] and f (1) \[\frac{1}{2}, find f(x)\]
` ∫ tan x sec^4 x dx `
\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]
\[\int {cosec}^4 2x\ dx\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]