English

∫ 1 − Cos X 1 + Cos X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]
Sum

Solution

\[\int\left( \frac{1 - \cos x}{1 + \cos x} \right)dx\]
\[ = \int\frac{\left( 1 - \cos x \right)^2}{1 - \cos^2 x}dx\]
\[ = \int\frac{1 + \cos^2 x - 2\cos x}{\sin^2 x}dx\]
\[ = \int \left( \frac{1}{\sin^2 x} + \frac{\cos^2 x}{\sin^2 x} - \frac{2\cos x}{\sin^2 x} \right)dx\]
\[ = \int \left( {cosec}^2 x + \cot^2 x - 2\cot x . \text{cosec x} \right)dx\]
\[ = \int \left( {cosec}^2 x + {cosec}^2 x - 1 - 2\cot x . cosec x \right)dx\]
\[ = \int \left( 2 {cosec}^2 x - 1 - 2\cot x . \text{cosec x} \right)dx\]
\[ = \int2 {cosec}^2 x dx - \int1 dx - \int2\cot x . \text{cosec x} dx\]
\[ = - 2\cot x - x + \text{2 cosec x} + C\]
\[ = 2\left( \text{cosec x }- \cot x \right) - x + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.02 [Page 15]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.02 | Q 43 | Page 15

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

`  ∫  sin 4x cos  7x  dx  `

` ∫   tan   x   sec^4  x   dx  `


\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int x \cos^2 x\ dx\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int \cot^5 x\ dx\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int {cosec}^4 2x\ dx\]


\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×