English

∫ Cos X 1 + Cos X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\cos x}{1 + \cos x} dx\]
Sum

Solution

\[\int\frac{\cos x}{1 + \cos x}dx\]
\[ = \int\frac{\cos x\left( 1 - \cos x \right)}{\left( 1 + \cos x \right)\left( 1 - \cos x \right)}dx\]
\[ = \int\frac{\cos x - \cos^2 x}{1 - \cos^2 x}dx\]
\[ = \int\frac{\cos x - \cos^2 x}{\sin^2 x}dx\]
\[ = \int\frac{\cos x}{\sin^2 x} - \frac{\cos^2 x}{\sin^2 x}dx\]
\[ = \int\left( \text{cot x cosec x} - \cot^2 x \right)dx\]
\[ = \int\left( \text{cot x cosec x} - cosec^2  x + 1 \right)dx\]
\[ = \int\text{cot x cosec x dx} - \  ∫ co \sec^2 x dx + \int1dx\]
\[ =\text{ - cosec x }+ \cot x + x + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.02 [Page 15]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.02 | Q 42 | Page 15

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

\[\int \left( \tan x + \cot x \right)^2 dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

` ∫  tan^3    x   sec^2  x   dx  `

\[\int \sin^3 x \cos^6 x \text{ dx }\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int\cos\sqrt{x}\ dx\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int \log_{10} x\ dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×