Advertisements
Advertisements
प्रश्न
\[\int\frac{\cos x}{1 + \cos x} dx\]
योग
उत्तर
\[\int\frac{\cos x}{1 + \cos x}dx\]
\[ = \int\frac{\cos x\left( 1 - \cos x \right)}{\left( 1 + \cos x \right)\left( 1 - \cos x \right)}dx\]
\[ = \int\frac{\cos x - \cos^2 x}{1 - \cos^2 x}dx\]
\[ = \int\frac{\cos x - \cos^2 x}{\sin^2 x}dx\]
\[ = \int\frac{\cos x}{\sin^2 x} - \frac{\cos^2 x}{\sin^2 x}dx\]
\[ = \int\left( \text{cot x cosec x} - \cot^2 x \right)dx\]
\[ = \int\left( \text{cot x cosec x} - cosec^2 x + 1 \right)dx\]
\[ = \int\text{cot x cosec x dx} - \ ∫ co \sec^2 x dx + \int1dx\]
\[ =\text{ - cosec x }+ \cot x + x + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]
` ∫ sin x \sqrt (1-cos 2x) dx `
\[\int\frac{1 - \sin x}{x + \cos x} dx\]
\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]
\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]
` ∫ tan x sec^4 x dx `
` ∫ tan^5 x sec ^4 x dx `
\[\int \sin^5 x \text{ dx }\]
\[\int\frac{x^2 - 1}{x^2 + 4} dx\]
\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]
\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]
\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]
\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]
` ∫ {x-3} /{ x^2 + 2x - 4 } dx `
\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]
\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]
\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]
\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]
\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]
\[\int\frac{1}{4 + 3 \tan x} dx\]
\[\int x \cos^2 x\ dx\]
\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2} \text{ dx }\]
\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]
\[\int\left( x + 1 \right) \text{ log x dx }\]
\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]
∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]
\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]
\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]
\[\int\frac{1}{x^4 - 1} dx\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
\[\int\frac{1}{7 + 5 \cos x} dx =\]
\[\int \tan^4 x\ dx\]
\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]
\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int\frac{x}{x^3 - 1} \text{ dx}\]
\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]