हिंदी

∫ E 3 X 4 E 6 X − 9 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]
योग

उत्तर

\[\int\frac{e^{3x} dx}{4 e^{6x} - 9}\]
\[\text{let }e^{3x} = t\]
\[ \Rightarrow e^{3x} \times 3dx = dt\]
\[ \Rightarrow e^{3x} dx = \frac{dt}{3}\]
\[Now, \int\frac{e^{3x} dx}{4 e^{6x} - 9}\]
\[ = \frac{1}{3}\int\frac{dt}{4 t^2 - 9}\]


\[ = \frac{1}{3}\int\frac{dt}{\left( 2t \right)^2 - 3^2}\]
\[ = \frac{1}{3} \times \frac{1}{2 \times 3} \text{ log }\left| \frac{2t - 3}{2t + 3} \right| \times \frac{1}{2} + C\]
\[ = \frac{1}{36} \text{ log }\left| \frac{2t - 3}{2t + 3} \right| + C\]
\[ = \frac{1}{36} \text{log }\left| \frac{2 e^{3x} - 3}{2 e^{3x} + 3} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.16 [पृष्ठ ९०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.16 | Q 5 | पृष्ठ ९०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]

\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int \left( a \tan x + b \cot x \right)^2 dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

`∫     cos ^4  2x   dx `


\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int x \cos^3 x\ dx\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int \tan^4 x\ dx\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


\[\int \left( e^x + 1 \right)^2 e^x dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×