Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\frac{e^{3x} dx}{4 e^{6x} - 9}\]
\[\text{let }e^{3x} = t\]
\[ \Rightarrow e^{3x} \times 3dx = dt\]
\[ \Rightarrow e^{3x} dx = \frac{dt}{3}\]
\[Now, \int\frac{e^{3x} dx}{4 e^{6x} - 9}\]
\[ = \frac{1}{3}\int\frac{dt}{4 t^2 - 9}\]
\[ = \frac{1}{3}\int\frac{dt}{\left( 2t \right)^2 - 3^2}\]
\[ = \frac{1}{3} \times \frac{1}{2 \times 3} \text{ log }\left| \frac{2t - 3}{2t + 3} \right| \times \frac{1}{2} + C\]
\[ = \frac{1}{36} \text{ log }\left| \frac{2t - 3}{2t + 3} \right| + C\]
\[ = \frac{1}{36} \text{log }\left| \frac{2 e^{3x} - 3}{2 e^{3x} + 3} \right| + C\]
APPEARS IN
संबंधित प्रश्न
If f' (x) = 8x3 − 2x, f(2) = 8, find f(x)
`∫ cos ^4 2x dx `
` = ∫ root (3){ cos^2 x} sin x dx `
\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]
Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .
\[\int \left( e^x + 1 \right)^2 e^x dx\]