हिंदी

∫ X 2 X 2 + 6 X + 12 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]
योग

उत्तर

\[\text{ Let I } = \int\frac{x^2 dx}{x^2 + 6x + 12}\]
\[\text{ Now }, \]

\[\text{ Therefore }, \]
\[\frac{x^2}{x^2 + 6x + 12} = 1 - \frac{\left( 6x + 12 \right)}{x^2 + 6x + 12} . . . . . \left( 1 \right)\]
\[\text { Let 6x } + 12 = A\frac{d}{dx} \left( x^2 + 6x + 12 \right) + B\]
\[ \Rightarrow 6x + 12 = A \left( 2x + 6 \right) + B\]
\[ \Rightarrow 6x + 12 = \left( 2A \right) x + 6A + B\]
\[\text{ Equating Coefficients of like terms }]\]
\[2A = 6\]
\[A = 3\]
\[6A + B = 12\]
\[18 + B = 12\]
\[B = - 6\]
\[ \therefore \frac{x^2}{x^2 + 6x + 12} = 1 - \frac{3 \left( 2x + 6 \right) - 6}{x^2 + 6x + 12}\]
\[I = \int\frac{x^2 dx}{x^2 + 6x + 12}\]
\[ = \int dx - 3\int\frac{\left( 2x + 6 \right) dx}{x^2 + 6x + 12} + 6\int\frac{dx}{x^2 + 6x + 12}\]
\[ = \int dx - 3 \int\frac{\left( 2x + 6 \right) dx}{x^2 + 6x + 12} + 6\int\frac{dx}{x^2 + 6x + 9 + 3}\]
\[ = \int dx - 3\int\frac{\left( 2x + 6 \right) dx}{x^2 + 6x + 12} + 6\int\frac{dx}{\left( x + 3 \right)^2 + \left( \sqrt{3} \right)^2}\]
\[ = x - 3 \text{ log } \left| x^2 + 6x + 12 \right| + \frac{6}{\sqrt{3}} \text{ tan }^{- 1} \left( \frac{x + 3}{\sqrt{3}} \right) + C\]
\[ = x - 3 \text{ log } \left| x^2 + 6x + 12 \right| + 2\sqrt{3} \text{ tan }^{- 1} \left( \frac{x + 3}{\sqrt{3}} \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.2 [पृष्ठ १०६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.2 | Q 10 | पृष्ठ १०६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int \cos^2 \frac{x}{2} dx\]

 


\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int e^\sqrt{x} \text{ dx }\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int \cos^5 x\ dx\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int \sin^{- 1} \sqrt{x}\ dx\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×