हिंदी

∫ Sin − 1 √ X a + X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]
योग

उत्तर

\[\text{ Let I }= \int \sin^{- 1} \sqrt{\frac{x}{a + x}} dx\]

\[\text{ Putting x }= a \tan^2 \theta\]

\[ \Rightarrow \sqrt{\frac{x}{a}} = \tan \theta\]

\[ \Rightarrow dx = a\left( 2 \tan \theta \right) \sec^2 \text{ θ   dθ  }\]

\[ \therefore I = \int \sin^{- 1} \sqrt{\frac{a \tan^2 \theta}{a + a \tan^2 \theta}} \left( 2a \tan \theta \right) \sec^2 \text{ θ   dθ  }\]

\[ = \int \sin^{- 1} \sqrt{\frac{\tan^2 \theta}{\sec^2 \theta}} \left( 2a \tan \theta \sec^2 \theta \right) d\theta\]

\[ = 2a \int \left[ \sin^{- 1} \left( \sin \theta \right)\tan \theta \sec^2 \theta \right] d\theta\]

\[= 2a \int \theta_I \tan \theta_{II} \sec^2 \text{ θ   dθ  }\]

\[ = 2a \left[ \theta\frac{\tan^2 \theta}{2} - \int1\frac{\tan^2 \theta}{2}d\theta \right]\]

\[ = 2a \left[ \frac{\theta . \tan^2 \theta}{2} - \frac{1}{2}\int\left( se c^2 \theta - 1 \right)d\theta \right]\]

\[ = \text{ a }\theta \tan^2 \theta - a \tan \theta + a\theta + C\]

\[ = a\left( \frac{x}{a} \right) \tan^{- 1} \left( \frac{\sqrt{x}}{\sqrt{a}} \right) - a\sqrt{\frac{x}{a}} + a \tan^{- 1} \sqrt{\frac{x}{a}} + C\]

\[ = x \tan^{- 1} \sqrt{\frac{x}{a}} - \sqrt{ax} + a \tan^{- 1} \sqrt{\frac{x}{a}} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.25 | Q 58 | पृष्ठ १३४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int \cos^5 x \text{ dx }\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

` = ∫1/{sin^3 x cos^ 2x} dx`


` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int e^\sqrt{x} \text{ dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

 
` ∫  x tan ^2 x dx 

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int \sin^{- 1} \sqrt{x}\ dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×