Advertisements
Advertisements
प्रश्न
\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]
योग
उत्तर
\[\int x^2 \cdot e^{x^3} \cdot \cos \left( e^{x^3} \right) dx\]
\[\text{Let e}^{x^3} = t\]
\[ \Rightarrow e^{x^3} \cdot 3 x^2 dx = dt\]
\[ \Rightarrow e^{x^3} \cdot x^2 dx = \frac{dt}{3}\]
\[Now, \int x^2 \cdot e^{x^3} \cdot \cos \left( e^{x^3} \right) dx\]
\[ = \frac{1}{3}\int\cos\left( t \right) dt\]
\[ = \frac{1}{3}\left[ \sin t \right] + C\]
\[ = \frac{1}{3}\left[ \sin \left( e^{x^3} \right) \right] + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\tan x}{\sec x + \tan x} dx\]
\[\int\sin x\sqrt{1 + \cos 2x} dx\]
\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]
Integrate the following integrals:
\[\int\text{sin 2x sin 4x sin 6x dx} \]
Integrate the following integrals:
\[\int\text { sin x cos 2x sin 3x dx}\]
\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]
\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]
\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]
` ∫ e^{m sin ^-1 x}/ \sqrt{1-x^2} ` dx
\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]
\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]
\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]
\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]
\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]
\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]
\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]
`int 1/(sin x - sqrt3 cos x) dx`
\[\int\frac{1}{p + q \tan x} \text{ dx }\]
\[\int\frac{1}{3 + 4 \cot x} dx\]
\[\int x e^x \text{ dx }\]
\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2} \text{ dx }\]
\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]
\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]
\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]
\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]
\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to
\[\int\frac{x^3}{x + 1}dx\] is equal to
\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]
\[\int \tan^4 x\ dx\]
\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]
\[\int\frac{1}{1 - x - 4 x^2}\text{ dx }\]
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]
\[\int\frac{1}{2 + \cos x} \text{ dx }\]
\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]
\[\int \sec^6 x\ dx\]
\[\int\sqrt{3 x^2 + 4x + 1}\text{ dx }\]
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`