हिंदी

∫ E X ( 1 + Sin X 1 + Cos X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]
योग

उत्तर

\[\text{ Let I } = \int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[ = \int e^x \left( \frac{1}{1 + \cos x} + \frac{\sin x}{1 + \cos x} \right) dx\]

\[ = \int e^x \left( \frac{1}{2 \cos^2 \frac{x}{2}} + \frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \cos^2 \frac{x}{2}} \right) dx\]

\[ = \int e^x \left( \frac{1}{2} \sec^2 \frac{x}{2} + \tan \frac{x}{2} \right) dx\]

\[ \text{ Putting e}^x \tan \frac{x}{2} = t\]

\[\text{ Diff  both  sides w . r . t . x }\]

\[ e^x \cdot \tan \left( \frac{x}{2} \right) + e^x \times \frac{1}{2} \sec^2 \frac{x}{2} = \frac{dt}{dx}\]

\[ \Rightarrow e^x \left[ \tan \frac{x}{2} + \frac{1}{2} \sec^2 \left( \frac{x}{2} \right) \right] dx = dt\]

\[ \therefore \int e^x \left( \frac{1}{2} \sec^2 \frac{x}{2} + \tan \frac{x}{2} \right) dx = \int dt\]

\[ = t + C\]

\[ = e^x \tan\left( \frac{x}{2} \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.26 [पृष्ठ १४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.26 | Q 3 | पृष्ठ १४३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 


\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int x^3 \cos x^2 dx\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int \tan^4 x\ dx\]

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×