हिंदी

∫ Sin X − Cos X √ Sin 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]
योग

उत्तर

\[\int\left( \frac{\sin x - \cos x}{\sqrt{\sin 2x}} \right) dx\]
\[ = \int\left( \frac{\sin x - \cos x}{\sqrt{1 + \sin 2x - 1}} \right)dx\]
\[ = \int\frac{\left( \sin x - \cos x \right)}{\sqrt{\sin^2 x + \cos^2 x + 2 \sin x \cos x - 1}}dx\]
\[ = \int\frac{\left( \sin x - \cos x \right)}{\sqrt{\left( \sin x + \cos x \right)^2 - 1}}dx\]
\[\text{ let }\sin x + \cos x = t\]
\[ \Rightarrow \left( \cos x - \sin x \right) dx = dt\]
\[ \Rightarrow \left( \sin x - \cos x \right)dx = - dt\]
\[Now, \int\frac{\left( \sin x - \cos x \right)}{\sqrt{\left( \ sin x + \cos x \right)^2 - 1}}dx\]
\[ = - \int\frac{dt}{\sqrt{t^2 - 1^2}}\]
\[ = - \text{ log }\left| t + \sqrt{t^2 - 1} \right| + C\]
\[ = - \text{ log }\left| \sin x + \cos x + \sqrt{\left( \sin x + \cos x \right)^2 - 1} \right| + C\]
\[ = - \text{ log }\left| \sin x + \cos x + \sqrt{\sin^2 x + \cos^2 x + 2\sin  x . \cos x - 1} \right| + C\]
\[ = - \text{ log } \left| \sin x + \cos x + \sqrt{\sin 2x} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.18 [पृष्ठ ९९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.18 | Q 17 | पृष्ठ ९९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int \sin^2\text{ b x dx}\]

\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

` ∫  tan^3    x   sec^2  x   dx  `

\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int x^2 \text{ cos x dx }\]

\[\int e^\sqrt{x} \text{ dx }\]

\[\int {cosec}^3 x\ dx\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×