हिंदी

∫ ( 2 X − 5 ) √ X 2 − 4 X + 3 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 

योग

उत्तर

\[\text{ Let I }= \int \left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]
\[ = \int \left( 2x - 4 - 1 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]
\[ = \int\left( 2x - 4 \right) \sqrt{x^2 - 4x + 3} \text{  dx }- \int\sqrt{x^2 - 4x + 3} \text{  dx }\]
\[ = \int\left( 2x - 4 \right) \sqrt{x^2 - 4x + 3} \text{  dx }- \int \sqrt{x^2 - 4x + 4 - 4 + 3} \text{  dx }\]
\[ = \int\left( 2x - 4 \right) \sqrt{x^2 - 4x + 3} \text{  dx }- \int \sqrt{\left( x - 2 \right)^2 - 1^2} \text{  dx }\]
\[\text{ Let x}^2 - 4x + 3 = t\]
\[ \Rightarrow \left( 2x - 4 \right)dx = dt\]
\[ \therefore I = \int\sqrt{t}\text{  dt }- \int\sqrt{\left( x - 2 \right)^2 - 1^2} dx\]
\[ = \frac{2}{3} t^\frac{3}{2} - \left[ \frac{x - 2}{2} \sqrt{\left( x - 2 \right)^2 - 1^2} - \frac{1^2}{2}\text{ log }\left| \left( x - 2 \right) + \sqrt{\left( x - 2 \right)^2 - 1} \right| \right] + C\]
\[ = \frac{2}{3} \left( x^2 - 4x + 3 \right)^\frac{3}{2} - \left( \frac{x - 2}{2} \right) \sqrt{x^2 - 4x + 3} + \frac{1}{2}\text{ log }\left| \left( x - 2 \right) + \sqrt{x^2 - 4x + 3} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.29 [पृष्ठ १५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.29 | Q 9 | पृष्ठ १५९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int x e^{2x} \text{ dx }\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×