हिंदी

∫ { Tan ( Log X ) + Sec 2 ( Log X ) } D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]
योग

उत्तर

\[\text{ Let I } = \int\left[ \tan\left( \log x \right) + \sec^2 \left( \log x \right) \right]dx\]

\[\text{ Put  log x = t }\]

\[ \Rightarrow x = e^t \]

\[ \Rightarrow dx = e^t dt\]

\[ \text{ ∴  I }= \int\left( \tan t + \sec^2 t \right) e^t dt\]

\[\text{ Here,} f(t) = \tan t\]

\[ \Rightarrow f'(t) = \sec^2 t\]

` \text{ let e}^t \tan(t) = p  `

\[\text{ Diff  both   sides  w . r . t t }\]

\[ e^t \left[ \tan t + \sec^2 t \right] = \frac{dp}{dt}\]

\[ \Rightarrow e^t \left[ \tan t + \sec^2 t \right]dt = dp\]

\[ ∴  I = \int dp\]

\[ = p + C\]

\[ = e^t \tan t + C\]

\[ = x \text{ tan (log x) }+ C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.26 [पृष्ठ १४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.26 | Q 22 | पृष्ठ १४३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

\[\int \sin^5 x \cos x \text{ dx }\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int x^3 \cos x^2 dx\]

\[\int\cos\sqrt{x}\ dx\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int x \sec^2 2x\ dx\]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×