हिंदी

∫ X 2 + 1 ( X − 2 ) 2 ( X + 3 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]
योग

उत्तर

We have,

\[I = \int\frac{\left( x^2 + 1 \right) dx}{\left( x - 2 \right)^2 \left( x + 3 \right)}\]

\[\text{Let }\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} = \frac{A}{x - 2} + \frac{B}{\left( x - 2 \right)^2} + \frac{C}{x + 3}\]

\[ \Rightarrow \frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} = \frac{A \left( x - 2 \right) \left( x + 3 \right) + B \left( x + 3 \right) + C \left( x - 2 \right)^2}{\left( x - 2 \right)^2 \left( x + 3 \right)}\]

\[ \Rightarrow x^2 + 1 = A \left( x^2 - 2x + 3x - 6 \right) + B \left( x + 3 \right) + C \left( x^2 - 4x + 4 \right)\]

\[ \Rightarrow x^2 + 1 = A \left( x^2 + x - 6 \right) + B \left( x + 3 \right) + C \left( x^2 - 4x + 4 \right)\]

Equating coefficients of like terms

\[A + C = 1 ..................(1)\]

\[A + B - 4C = 0 ...................(2)\]

\[ - 6A + 3B + 4C = 1 .....................(3)\]

Solving (1), (2) and (3), we get

\[A = \frac{3}{5}, B = 1\text{ and }C = \frac{2}{5}\]

\[ \therefore I = \frac{3}{5}\int\frac{dx}{x - 2} + \int\frac{dx}{\left( x - 2 \right)^2} + \frac{2}{5}\int\frac{dx}{x + 3}\]

\[ = \frac{3}{5} \log \left| x - 2 \right| + \left[ \frac{\left( x - 2 \right)^{- 2 + 1}}{- 2 + 1} \right] + \frac{2}{5} \log \left| x + 3 \right| + C\]

\[ = \frac{3}{5}\log \left| x - 2 \right| - \frac{1}{x - 2} + \frac{2}{5} \log \left| x + 3 \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 29 | पृष्ठ १७७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\frac{x^3}{x - 2} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int x^2 \text{ cos x dx }\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int e^\sqrt{x} \text{ dx }\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×