Advertisements
Advertisements
प्रश्न
विकल्प
2 loge cos (xex) + C
sec (xex) + C
tan (xex) + C
tan (x + ex) + C
उत्तर
tan (xex) + C
\[\text{Let }I = \int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)}dx\]
\[\text{Putting }x e^x = t\]
\[ \Rightarrow \left( 1 \cdot e^x + x e^x \right)dx = dt\]
\[ \Rightarrow e^x \left( 1 + x \right)dx = dt\]
\[ \therefore I = \int\frac{dt}{\cos^2 t}\]
\[ = \int \sec^2 t dt\]
\[ = \tan t + C\]
\[ = \tan \left( x e^x \right) + C ............\left( \because t = x e^x \right)\]
APPEARS IN
संबंधित प्रश्न
` = ∫ root (3){ cos^2 x} sin x dx `
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then
\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}} \text{ dx }\]
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]
Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .