हिंदी

∫ 1 1 + X + X 2 + X 3 Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]
योग

उत्तर

\[\text{We have}, \]
\[I = \int\frac{dx}{1 + x + x^2 + x^3}\]
\[ = \int\frac{dx}{\left( 1 + x \right) + x^2 \left( 1 + x \right)}\]
\[ = \int \frac{dx}{\left( 1 + x \right) \left( 1 + x^2 \right)}\]
\[\text{ Let }\frac{1}{\left( x + 1 \right) \left( 1 + x^2 \right)} = \frac{A}{x + 1} + \frac{Bx + C}{x^2 + 1}\]
\[ \Rightarrow \frac{1}{\left( x + 1 \right) \left( x^2 + 1 \right)} = \frac{A \left( x^2 + 1 \right) + \left( Bx + C \right) \left( x + 1 \right)}{\left( x + 1 \right) \left( x^2 + 1 \right)}\]
\[ \Rightarrow 1 = A \left( x^2 + 1 \right) + B x^2 + Bx + Cx + C\]
\[ \Rightarrow 1 = \left( A + B \right) x^2 + \left( B + C \right) x + \left( A + C \right)\]
\[\text{Equating Coefficient of like terms}\]
\[A + B = 0 . . . . . \left( 1 \right)\]
\[B + C = 0 . . . . . \left( 2 \right)\]
\[A + C = 1 . . . . . \left( 3 \right)\]
\[\text{Solving} \left( 1 \right), \left( 2 \right) \text{ and }\left( 3 \right), \text{we get}, \]
\[A = \frac{1}{2}\]
\[B = - \frac{1}{2}\]
\[C = \frac{1}{2}\]
\[ \therefore \frac{1}{\left( x + 1 \right) \left( x^2 + 1 \right)} = \frac{1}{2 \left( x + 1 \right)} + \frac{- \frac{x}{2} + \frac{1}{2}}{x^2 + 1}\]
\[ \Rightarrow \frac{1}{\left( x + 1 \right) \left( x^2 + 1 \right)} = \frac{1}{2 \left( x + 1 \right)} - \frac{1}{2} \left( \frac{x}{x^2 + 1} \right) + \frac{1}{2 \left( x^2 + 1 \right)}\]
\[ \therefore I = \frac{1}{2}\int\frac{dx}{x + 1} - \frac{1}{2}\int\frac{x dx}{\left( x^2 + 1 \right)} + \frac{1}{2}\int\frac{dx}{x^2 + 1}\]
\[\text{ Putting x}^2 + 1 = t\]
\[ \Rightarrow 2x\ dx\ = dt\]
\[ \Rightarrow x\ dx\ = \frac{dt}{2}\]
\[ \therefore I = \frac{1}{2}\int\frac{dx}{x + 1} - \frac{1}{4}\int\frac{dt}{t} + \frac{1}{2}\int\frac{dx}{x^2 + 1}\]
\[ = \frac{1}{2} \text{ log }\left| x + 1 \right| - \frac{1}{4} \text{ log }\left| t \right| + \frac{1}{2} \text{ tan}^{- 1} x + C\]
\[ = \frac{1}{2} \text{ log }\left| x + 1 \right| - \frac{1}{4} \text{ log }\left| x^2 + 1 \right| + \frac{1}{2} \text{ tan}^{- 1} \left( x \right) + C\]
\[ = \frac{1}{2} \text{ log } \left| x + 1 \right| - \frac{1}{2} \text{ log } \left( \sqrt{x^2 + 1} \right) + \frac{1}{2} \text{ tan}^{- 1} \left( x \right) + C\]
\[ = \frac{1}{2} \text{ log } \left( \frac{\left| x + 1 \right|}{\sqrt{x^2 + 1}} \right) + \frac{1}{2} \text{ tan}^{- 1} \left( x \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 124 | पृष्ठ २०५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int \cot^5 x  \text{ dx }\]

` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int x^2 \sin^2 x\ dx\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int {cosec}^4 2x\ dx\]


\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×