हिंदी

∫ X √ 1 + X − X 2 Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]
योग

उत्तर

\[\text{ Let I }= \int x\sqrt{1 + x - x^2}\text{ dx}\]
\[\text{ and  let x }= A\frac{d}{dx}\left( 1 + x - x^2 \right) + B\]
\[ \Rightarrow x = A \left( - 2x + 1 \right) + B\]
\[\text{By equating the coefficients of like terms we get}, \]
\[x = \left( - 2A \right) x\]
\[ \Rightarrow A = - \frac{1}{2}\]
\[\text{  and   A + B = 0 }\]
\[ \Rightarrow B = \frac{1}{2}\]
\[\text{By substituting the values of A and B in eq (1) we get}, \]
\[I = \int\left[ - \frac{1}{2} \left( - 2x + 1 \right) + \frac{1}{2} \right] \sqrt{1 + x - x^2} \text{ dx }\]
\[ = - \frac{1}{2}\int\left( - 2x + 1 \right) \sqrt{1 + x - x^2}dx + \frac{1}{2} \sqrt{1 + x - x^2}\text{ dx }\]
\[\text{ Putting  1 + x - x^2 = t}\]
\[ \Rightarrow \left( - 2x + 1 \right) \text{ dx }= dt\]
\[ \therefore I = - \frac{1}{2}\int\sqrt{t} \cdot dt + \frac{1}{2}\int\sqrt{1 + x - x^2} \text{ dx }\]
\[ = - \frac{1}{2}\int\sqrt{t} \text{ dt} + \frac{1}{2}\int\sqrt{1 - \left( x^2 - x \right)} \text{ dx }\]
\[ = - \frac{1}{2}\int t^\frac{1}{2} \cdot dt + \frac{1}{2}\int\sqrt{1 - \left( x^2 - x + \frac{1}{4} - \frac{1}{4} \right)}\text{ dx }\]
\[ = - \frac{1}{2}\left[ \frac{t^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] + \frac{1}{2}\int\sqrt{1 - \left( x - \frac{1}{2} \right)^2 + \frac{1}{4}}\text{ dx }\]
\[ = - \frac{1}{2} \times \frac{2}{3} t^\frac{3}{2} + \frac{1}{2}\int\sqrt{\left( \frac{\sqrt{5}}{2} \right)^2 - \left( x - \frac{1}{2} \right)^2}dx\]
\[ = - \frac{1}{3} t^\frac{3}{2} + \frac{1}{2}\left[ \left( \frac{x - \frac{1}{2}}{2} \right) \sqrt{\left( \frac{\sqrt{5}}{2} \right)^2 - \left( x - \frac{1}{2} \right)^2} + \frac{\left( \frac{\sqrt{5}}{2} \right)^2}{2} \text{ sin}^{- 1} \left( \frac{x - \frac{1}{2}}{\frac{\sqrt{5}}{2}} \right) \right] + C ......................\left[ \because \int\sqrt{a^2 - x^2}dx = \frac{x}{2}\sqrt{a^2 - x^2} + \frac{1}{2} a^2 \sin^{- 1} \frac{x}{a} + C \right]\]
\[ = - \frac{1}{3} \left( 1 + x - x^2 \right)^\frac{3}{2} + \frac{1}{2}\left[ \left( \frac{2x - 1}{4} \right) \sqrt{1 + x - x^2} + \frac{5}{8} \text{ sin}^{- 1} \left( \frac{2x - 1}{\sqrt{5}} \right) \right] + C\]
\[ = \frac{- \left( 1 + x - x^2 \right)\sqrt{1 + x - x^2}}{3} + \frac{\left( 2x - 1 \right)}{8} \sqrt{1 + x - x^2} + \frac{5}{16} \text{ sin}^{- 1} \left( \frac{2x - 1}{\sqrt{5}} \right) + C\]
\[ = \sqrt{1 + x - x^2} \left[ \frac{- \left( 1 + x - x^2 \right)}{3} + \frac{2x - 1}{8} \right] + \frac{5}{16} \text{ sin}^{- 1} \left( \frac{2x - 1}{\sqrt{5}} \right) + C\]
\[ = \sqrt{1 + x - x^2} \left[ \frac{- 8 - 8x + 8 x^2 + 6x - 3}{24} \right] + \frac{5}{16}\text{ sin}^{- 1} \left( \frac{2x - 1}{\sqrt{5}} \right) + C\]
\[ = \sqrt{1 + x - x^2} \left[ \frac{8 x^2 - 2x - 11}{24} \right] + \frac{5}{16} \text{ sin}^{- 1} \left( \frac{2x - 1}{\sqrt{5}} \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 89 | पृष्ठ २०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int \sin^5 x \text{ dx }\]

\[\int \sin^7 x  \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int x \sin x \cos x\ dx\]

 


\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int \sec^6 x\ dx\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×