हिंदी

∫ 1 Cos 2 X + 3 Sin 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]
योग

उत्तर

\[\text{ Let I }= \int \frac{1}{\text{ cos } \left( \text{ 2x }\right) + 3 \sin^2 x}\text{ dx }\]
\[ = \int \frac{1}{\left( 1 - 2 \sin^2 x \right) + 3 \sin^2 x}\text{ dx }\]
\[ = \int \frac{1}{1 + \sin^2 x}\text{ dx }\]
\[\text{Dividing numerator and denominator by} \cos^2 x\]
\[ \Rightarrow I = \int\frac{\sec^2 x}{\sec^2 x + \tan^2 x}dx\]
\[ = \int\frac{\sec^2 x}{1 + \tan^2 x + \tan^2 x}dx\]
\[ = \int \frac{\sec^2 x}{1 + 2 \tan^2}dx\]
\[ = \int \frac{\sec^2 x}{1 + \left( \sqrt{2} \tan x \right)^2}dx\]
\[\text{ Let }\sqrt{2} \tan x = t\]
\[ \Rightarrow \sqrt{2} \sec^2 x \text{ dx }= dt\]
\[ \Rightarrow \sec^2 x \text{ dx } = \frac{dt}{\sqrt{2}}\]
\[ \therefore I = \frac{1}{\sqrt{2}} \int \frac{dt}{1 + t^2}\]
\[ = \frac{1}{\sqrt{2}} \tan^{- 1} \left( t \right) + C\]
\[ = \frac{1}{\sqrt{2}} \tan^{- 1} \left( \sqrt{2} \tan x \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.22 [पृष्ठ ११४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.22 | Q 11 | पृष्ठ ११४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int \sin^2 \frac{x}{2} dx\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int \tan^4 x\ dx\]

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×