हिंदी

∫ 1 7 + 5 Cos X D X = - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{7 + 5 \cos x} dx =\]

विकल्प

  • \[\frac{1}{\sqrt{6}} \tan^{- 1} \left( \frac{1}{\sqrt{6}}\tan\frac{x}{2} \right) + C\]
  • \[\frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{1}{\sqrt{3}}\tan\frac{x}{2} \right) + C\]

  • \[\frac{1}{4} \tan^{- 1} \left( \tan\frac{x}{2} \right) + C\]
  • \[\frac{1}{7} \tan^{- 1} \left( \tan\frac{x}{2} \right) + C\]
MCQ

उत्तर

\[\frac{1}{\sqrt{6}} \tan^{- 1} \left( \frac{1}{\sqrt{6}}\tan\frac{x}{2} \right) + C\]
 
 
\[\text{Let }I = \int\frac{dx}{7 + 5 \cos x}\]

\[\text{Putting }\cos x = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\]
\[ \therefore I = \int\frac{dx}{7 + 5 \times \left( \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right)}\]
\[ = \int\frac{\left( 1 + \tan^2 \frac{x}{2} \right) dx}{7\left( 1 + \tan^2 \frac{x}{2} \right) + 5 - 5 \tan^2 \frac{x}{2}}\]
\[ = \int\frac{\sec^2 \frac{x}{2} dx}{2 \tan^2 \frac{x}{2} + 12}\]
\[ = \frac{1}{2}\int\frac{\sec^2 \frac{x}{2}dx}{\tan^2 \frac{x}{2} + \left( \sqrt{6} \right)^2}\]
\[\text{Let }\tan \frac{x}{2} = t\]
\[ \Rightarrow \frac{1}{2} \sec^2 \left( \frac{x}{2} \right) dx = dt\]
\[ \Rightarrow \sec^2 \left( \frac{x}{2} \right) dx = 2 dt\]
\[ \therefore I = \frac{1}{2}\int\frac{2 dt}{t^2 + \left( \sqrt{6} \right)^2}\]
\[ = \frac{1}{\sqrt{6}} \tan^{- 1} \left( \frac{t}{\sqrt{6}} \right) + C ................\left( \because \int\frac{1}{a^2 + x^2} = \frac{1}{a} \tan^{- 1} \frac{x}{a} + C \right)\]
\[ = \frac{1}{\sqrt{6}} \tan^{- 1} \left( \frac{\tan \frac{x}{2}}{\sqrt{6}} \right) + C .............\left( \because t = \tan \frac{x}{2} \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - MCQ [पृष्ठ २०१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
MCQ | Q 16 | पृष्ठ २०१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int \cos^5 x \text{ dx }\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int x e^x \text{ dx }\]

\[\int x e^{2x} \text{ dx }\]

\[\int x^2 e^{- x} \text{ dx }\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×